首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a β-type Stirling engine was designed and manufactured which works at relatively lower temperatures. To increase the heat transfer area, the inner surface of the displacer cylinder was augmented by means of growing spanwise slots. To perform a better approach to the theoretical Stirling cycle, the motion of displacer was governed by a lever. The engine block was used as pressurized working fluid reservoir. The escape of working fluid, through the end-pin bearing of crankshaft, was prevented by means of adapting an oil pool around the end-pin. Experimental results presented in this paper were obtained by testing the engine with air as working fluid. The hot end of the displacer cylinder was heated with a LPG flame and kept about 200 °C constant temperature throughout the testing period. The other end of the displacer cylinder was cooled with a water circulation having 27 °C temperature. Starting from ambient pressure, the engine was tested at several charge pressures up to 4.6 bars. Maximum power output was obtained at 2.8 bars charge pressure as 51.93 W at 453 rpm engine speed. The maximum torque was obtained as 1.17 Nm at 2.8 bars charge pressure. By comparing experimental work with theoretical work calculated by nodal analysis, the convective heat transfer coefficient at working fluid side of the displacer cylinder was predicted as 447 W/m2 K for air. At maximum shaft power, the internal thermal efficiency of the engine was predicted as 15%.  相似文献   

2.
The combustion chamber is an important component for the Stifling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stifling engine which aims to generate 3-5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two appar- ent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stifling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experi- mental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utiliza- tion efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of com- bustion chamber has reached the design goal, The designed combustion chamber can be applied to a real Stifling engine heated by natural gas which is to generate 3-5 kWe electric power.  相似文献   

3.
This article presents a technical innovation, study of solar power system based on the Stirling dish (SD) technology and design considerations to be taken in designing of a mean temperature differential Stirling engine for solar application. The target power source will be solar dish/Stirling with average concentration ratio, which will supply a constant source temperature of 320 °C. Hence, the system design is based on a temperature difference of 300 °C, assuming that the sink is kept at 20 °C. During the preliminary design stage, the critical parameters of the engine design are determined according to the dynamic model with losses energy and pressure drop in heat exchangers was used during the design optimisation stage in order to establish a complete analytical model for the engine. The heat exchangers are designed to be of high effectiveness and low pressure-drop. Upon optimisation, for given value of difference temperature, operating frequency and dead volume there is a definite optimal value of swept volume at which the power is a maximum. The optimal swept volume of 75 cm3 for operating frequency 75 Hz with the power is 250 W and the dead volume is of 370 cm3.  相似文献   

4.
One of the aims of this work is the study of the geometry of a micro‐cogenerator using a Stirling engine with four double effect pistons. The complex geometry of the heat exchangers was determined by optical measurements. Results of three thermodynamic models: Direct Method from Finite Speed Thermodynamics (FST), isothermal model (Schmidt), and adiabatic model (Finkelstein) are confronted to experimental ones. Direct Method consists of the study and the evaluation of the irreversibilities of thermal machines by analyzing the cycle, step by step, and directly integrating the equation of the First Law for processes with finite speed combined with Second Law of Thermodynamics, for each process of the cycle. The expression of efficiency and power, depending on the speed of the processes and geometric and functional parameters, is then obtained in a straightforward manner. The isothermal and adiabatic models are based on the division of Stirling engine in 3, respectively 5 control volumes, for which the ideal gas law and the equations of mass and energy balance are applied. Analysis of the process of heat transfer and flow of the working gas, taking place in the Stirling engine, is carried out taking into account instantaneous representation of the working fluid volume in the engine. A system of differential equations is solved by iteration using Matlab/Simulink software. The theoretical results are compared to experimental ones. This comparison allows to point out a good accuracy of the Direct Method and the Adiabatic Model, for the thermal operating parameters of the system, noting the different assumptions of each analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers.From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity.  相似文献   

6.
A solar-driven Stirling engine is modelled as a combined system which consists of a solar collector and a Stirling engine. The performance of the system is investigated, based on the linearized heat loss model of the solar collector and the irreverisible cycle model of the Stirling engine affected by finite-rate heat transfer and regenerative losses. The maximum efficiency of the system and the optimal operating temperature of the solar collector are determined. Moreover, it is pointed out that the investigation method in the present paper is valid for other heat loss models of the solar collector as well, and the results obtained are also valid for a solar-driven Ericsson engine system using an ideal gas as its engine work substance. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides an experimental investigation on the performance of a low-temperature differential Stirling engine. In this study, a twin power piston, gamma-configuration, low-temperature differential Stirling engine is tested with non-pressurized air by using a solar simulator as a heat source. The engine testing is performed with four different simulated solar intensities. Variations of engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number, obtained from the testing of the engine, is also investigated. The results indicate that at the maximum simulated solar intensity of 7145 W/m2, or heat input of 261.9 J/s, with a heater temperature of 436 K, the engine produces a maximum torque of 0.352 N m at 23.8 rpm, a maximum shaft power of 1.69 W at 52.1 rpm, and a maximum brake thermal efficiency of 0.645% at 52.1 rpm, approximately.  相似文献   

8.
In this paper, we evaluate the viability of a 9.5‐kWe wooden pellet‐fueled Stirling engine‐based micro‐cogeneration plant as a substitute for small‐scale district heating. The district heating systems against which the micro‐cogeneration plant is compared are based either on a pellet‐fueled boiler or a ground‐source heat pump. The micro‐cogeneration and district heating plants are compared in terms of primary energy consumption, CO2 emissions, and feasibility of the investment. The comparison also considers an optimally operated individual 0.7‐kWe pellet‐fueled Stirling engine micro‐cogeneration system with exhaust gas heat recovery. The study is conducted in two different climates and contributes to the knowledge base by addressing: (i) hourly changes in the Finnish electricity generation mix; and (ii) uncertainty related to what systems are used as reference and the treatment of displaced grid electricity. Our computational results suggest that when operated at constant power, the 9.5‐kWe Stirling engine plant results in reduced annual primary energy use compared with any of the alternative systems. The results are not sensitive to climate or the energy efficiency or number of buildings. In comparison with the pellet‐fueled district heating plant, the annual use of primary energy and CO2 emissions are reduced by a minimum of 25 and 19%, respectively. Owing to a significant displacement of grid electricity, the system's net primary energy consumption appears negative when the total built area served by the plant is less than 1200 m2. On the economic side, the maximum investment cost threshold of a CHP‐based district heating system serving 10 houses or more can typically be positive when compared with oil and pellet systems, but negative when compared with a corresponding heat pump system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Many industrial processes and conventional fossil fuel energy production systems used in small-medium industries, such as internal combustion engines and gas turbines, provide low or medium temperature (i.e., 200–500 °C) heat fluxes as a by-product, which are typically wasted in the environment. The possibility of exploiting this wasted heat, converting it into electric energy by means of different energy systems, is investigated in this article, by extending the usual range of operation of existing technologies or introducing novel concepts. In particular, among the small size bottoming cycle technologies, the identified solutions which could allow to improve the energy saving performance of an existing plant by generating a certain amount of electric energy are: the Organic Rankine Cycle, the Stirling engine and the Inverted Brayton Cycle; this last is an original thermodynamic concept included in the performed comparative analysis.  相似文献   

10.
To increase the performance of Stirling engines and analyze their operations, a second-order Stirling model, which includes thermal losses, has been developed and used to optimize the performance and design parameters of the engine. This model has been tested using the experimental data obtained from the General Motor GPU-3 Stirling engine prototype. The model has also been used to investigate the effect of the geometrical and physical parameters on Stirling engine performance and to determine the optimal parameters for acceptable operational gas pressure. When the optimal design parameters are introduced in the model, the engine efficiency increases from 39% to 51%; the engine power is enhanced by approximately 20%, whereas the engine average pressure increases slightly.  相似文献   

11.
In this communication, a 50 MWe design capacity parabolic dish Stirling engine solar power plant (PDSSPP) has been modeled for analysis, where 2000 units of parabolic dish Stirling engine each having capacity of 25 kWe were considered to get desired capacity. An attempt has been made to carry out the energetic and exergetic analysis of different components of a solar power plant system using parabolic dish collector/receiver and Stirling engine. The energetic and exergetic losses as well as efficiencies for typical PDSSPP under the typical operating conditions have been evaluated. Variations of the efficiency of Stirling engine solar power plant at the part‐load condition are considered for year‐round performance evaluation. The developed model is examined at location Jodhpur (26.29°N, 73.03°E) in India. It is found that year‐round energetic efficiency varies from 15.57% to 27.09%, and exergetic efficiency varies from 16.83% to 29.18%. The unit cost of electric energy generation (kWeh) is about 8.76 Indian rupees (INR), with 30 years life span of the plant and 10% interest rate on investment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A new integrated combined cooling, heating and power system which includes a solid oxide fuel cell, Stirling engine, steam turbine, linear Fresnel solar field and double effect absorption chiller is introduced and investigated from energy, exergy and thermodynamic viewpoints. In this process, produced electrical power by the fuel cell and steam turbines is 6971.8 kW. Stirling engine uses fuel cell waste heat and produces 656 kW power. In addition, absorption chiller is driven by waste heat of the Stirling engine and generates 2118.8 kW of cooling load. Linear Fresnel solar field produces 961.7 kW of thermal power as a heat exchanger. The results indicate that, electrical, energy and exergy efficiencies and total exergy destruction of the proposed system are 49.7%, 67.5%, 55.6% and 12560 kW, respectively. Finally, sensitivity analysis to investigate effect of the different parameters such as flow rate of inputs, outlet pressure of the components and temperature changes of the solar system on the hybrid system performance is also done.  相似文献   

13.
The paper deals with the integration between a kinematic Stirling engine and a fluidized bed combustor for micro-scale cogeneration of renewable energy. A pilot-scale facility integrating a 40 kWt combustor and a γ-type Stirling engine (0.5 kWe) was set up and tested to demonstrate the feasibility of this solution. The Stirling engine was installed at a lateral wall of the combustor in direct contact with the fluidized bed region. An experimental campaign was executed to assess the performance of the innovative integrated system. The experimental results can be summarized in: (a) very high combustion efficiency with biomass feeding, (b) elevated heat transfer rate to the engine, (c) a relatively small share (about 2 kWt) transferred to the engine from the thermal power generated by the combustor (around 13 kWt), (d) conversion to electric power close to the upper limit of the engine, (e) limited impact of the Stirling engine on the fluidized bed behavior, for example, temperature. From the analysis of measured variables, the dynamics is dominated by the fast response of the Stirling engine, which rapidly reacts to the slow changes of the fluidized bed combustor regime: the dynamic response of the tested facility as a thermal system was slow, the time constant being of the order of 10 minutes.  相似文献   

14.
The simultaneous productions of mechanical work and low-grade heat by a Stirling engine cogeneration powered by crude glycerol are studied analytically. The study focuses on searching the appropriate values of engine physical parameters to minimize the specific fuel consumption to optimize the work production regardless of the low-grade heat production. The modeling considers the equation of combustion, finite heat transfer between the sources and the working gas, non-perfect regenerator, non-isothermal transformations and non-sinusoidal volume variations during the crankshaft rotation. The optimum operating temperature of the engine hot source and the optimum piston-displacer angular phase shift are determined for alpha, beta and gamma Stirling engines according to the engines swept volume ratio. Results show that the optimum configuration changes considerably with the value of the coefficient of heat transfer. The minimum specific glycerol consumption is 1024 ggly./kWh and is obtained with alpha type engine. Best performance for beta type is quasi-similar but in this last case, the indicated work production is higher than for alpha engine.  相似文献   

15.
苏孙庆 《节能技术》2007,25(1):53-55
基于理想玻色气体的状态方程,分析以理想玻色气体为工质的量子斯特林热机具有非理想回热特性,导出循环的效率和输出功的表达式,并对结果进行一些有意义的讨论,所得结果将对斯特林热机的研究提供些理论依据.  相似文献   

16.
The search for an engine cycle with high efficiency, multi-sources of energy and less pollution has led to reconsideration of the Stirling cycle. Several engine prototypes were designed but their performances remain relatively weak when compared with other types of combustion engines. In order to increase their performances and analyze their operations, a numerical simulation model taking into account thermal losses has been developed and used, in this paper, to optimize the engine performance. This model has been tested using the experimental data obtained from the General Motor GPU-3 Stirling engine prototype. A good correlation between experimental data and model prediction has been found. The model has also been used to investigate the influence of geometrical and physical parameters on the Stirling engine performance and to determine the optimal parameters for an acceptable operational gas pressure.  相似文献   

17.
Under the consideration of the solar energy potential of Turkey, a V-type Stirling engine having two heaters was designed, optimized and then manufactured. The prototype engine was tested in laboratory condition using an electrical heating system. Tests were conducted within the temperature range of 650–1000 °C with 50 °C increments. The pressure ranged from the ambient value to 2 bar with 0.5 bar increments at each stage of temperature. The maximum power was obtained at 950 °C and 1.0 bar charge pressure as 118 W.  相似文献   

18.
This paper presents a new design for high temperature fuel cell and bottoming thermal engine hybrid systems. Now, instead of the commonly used gas turbine engine, an externally fired - Stirling - piston engine is used, showing outstanding performance when compared to previous designs.Firstly, a comparison between three thermal cycles potentially usable for recovering waste heat from the cell is presented, concluding the interest of the Stirling engine against other solutions used in the past.Secondly, the interest shown in the previous section is confirmed when the complete hybrid system is analyzed. Advantages are not only related to pure thermal and electrochemical parameters like specific power or overall efficiency. Additionally, further benefits can be obtained from the atmospheric operation of the fuel cell and the possibility to disconnect the bottoming engine from the cell to operate the latter on stand alone mode. This analysis includes on design and off design operation.  相似文献   

19.
The key component of a Stirling engine is its regenerative heat exchanger. This device is subject to losses due to dissipation arising from the flow through the regenerator as well as due to imperfect heat transfer between the regenerator material and the gas. The magnitudes of these losses are characterized by the Stanton number St and the Fanning friction factor f, respectively. Using available data for the ratio St/f, results are found for the Carnot efficiency and the power output of the regenerator. They depend on the conductance and on the ratio of pressures at the two sides of the regenerator. Optimum results for efficiency and power output of the regenerator are derived in the limit of zero Mach number. The results are applied to the Stirling engine. The efficiency and the power output of the engine are found for given amplitude of the compression piston. Optimization with respect to regenerator conductance and piston phase angle leads to a maximum possible value of the power output. Under optimal conditions, the Carnot efficiency just below this maximum is close to 100%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a gamma type Stirling engine with 276 cc swept volume was designed and manufactured. The engine was tested with air and helium by using an electrical furnace as heat source. Working characteristics of the engine were obtained within the range of heat source temperature 700–1000 °C and range of charge pressure 1–4.5 bar. Maximum power output was obtained with helium at 1000 °C heat source temperature and 4 bar charge pressure as 128.3 W. The maximum torque was obtained as 2 N m at 1000 °C heat source temperature and 4 bar helium charge pressure. Results were found to be encouraging to initiate a Stirling engine project for 1 kW power output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号