首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of oxygen concentration on the pulse and steady-state selective catalytic reduction (SCR) of NO with C3H6 over CuO/γ-Al2O3 has been studied by infrared spectroscopy (IR) coupled with mass spectroscopy studies. IR studies revealed that the pulse SCR occurred via (i) the oxidation of Cu0/Cu+ to Cu2+ by NO and O2, (ii) the co-adsorption of NO/NO2/O2 to produce Cu2+(NO3)2, and (iii) the reaction of Cu2+(NO3)2 with C3H6 to produce N2, CO2, and H2O. Increasing the O2/NO ratio from 25.0 to 83.4 promotes the formation of NO2 from gas phase oxidation of NO, resulting in a reactant mixture of NO/NO2/O2. This reactant mixture allows the formation of Cu2+(NO3)2 and its reaction with the C3H6 to occur at a higher rate with a higher selectivity toward N2 than the low O2/NO flow. Both the high and low O2/NO steady-state SCR reactions follow the same pathway, proceeding via adsorbed C3H7---NO2, C3H7---ONO, CH3COO, Cu0---CN, and Cu+---NCO intermediates toward N2, CO2, and H2O products. High O2 concentration in the high O2/NO SCR accelerates both the formation and destruction of adsorbates, resulting in their intensities similar to the low O2/NO SCR at 523–698 K. High O2 concentration in the reactant mixture resulted in a higher rate of destruction of the intermediates than low O2 concentration at temperatures above 723 K.  相似文献   

2.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

3.
The photocatalytic oxidation of CO into CO2 with oxidants such as NO, N2O and O2 proceeded efficiently on a Mo/SiO2 with high Mo dispersion under UV light irradiation. It was found that the reaction rate greatly depended on the kind and concentration of the oxidant. Photoluminescence investigations reveal the close relationship between the reaction rate and the relative concentration of the photo-excited Mo6+-oxide species, i.e. charge transfer–excited–triplet state (Mo5+–O)*, under steady-state reaction conditions. Moreover, the photocatalytic oxidation of CO with O2 in excess H2 was carried out to test suitability for applications to supplying pure H2. This reaction was seen to proceed efficiently on Mo/SiO2 with a high CO conversion of 100% and CO selectivity of 99% after 180 min under UV light irradiation, showing higher photocatalytic performance than TiO2 (P-25) photocatalyst. UV–vis, XAFS, photoluminescence and FT-IR investigations revealed that the high reactivity of the charge transfer–excited–triplet state (Mo5+–O)*, with CO as well as the high reactivity of the photoreduced Mo-oxide species (Mo4+-species) with O2 to produce the original Mo-oxide species (Mo6+O2−), played a crucial role in the reactions.  相似文献   

4.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

5.
A transient kinetic model was developed for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. The experiments which were modelled consisted of periodically switching between a feed stream containing 0.5 mol% CO in helium and a feed stream containing 0.5 mol% O2 in helium, with a frequency from 0.1 to 0.25 Hz, in the temperature range 393–433 K. These temperatures are representative for cold start conditions. The transient experiments yield information about the reaction mechanism. A transient kinetic model based on elementary reaction steps was developed which describes the experimental data in the above mentioned range of experimental conditions adequately. The kinetic model consists of two monofunctional and one bifunctional contribution. The first monofunctional reaction path comprises competitive adsorption of CO and O2 on the noble metal surface followed by a surface reaction. The second monofunctional reaction path consists of CO adsorption on an oxygen atom adsorbed on the noble metal surface, followed by a reaction to CO2. The bifunctional reaction path involves a reaction between CO adsorbed on the noble metal surface and oxygen from ceria at the noble metal/ceria interface. Also, reversible adsorption of carbon dioxide on the support is taken into account. The kinetic parameters, i.e. preexponential factors and activation energies for the different elementary reaction steps, and the oxygen storage capacity were estimated using multi-response non-linear regression analysis of the oxygen, carbon monoxide and carbon dioxide outlet concentrations.  相似文献   

6.
Roles of CO2 and H2O as oxidants are discussed based on the data on the substrate conversions and the product distributions in the nonthermal plasma reforming of aliphatic hydrocarbons such as methane, propane, and neopentane from 303 K to 433 K. Only small effects of initial concentrations of hydrocarbons and types of oxidants are observed on hydrocarbon conversions, and the initial chemical interaction between hydrocarbons and the oxidants unlikely occurs. CO2 and H2O have shown the comparable oxidation powers in the hydrocarbon reforming. Two molar excess of CO2 or H2O to methane is required to oxidize methane carbon atoms to CO and CO2, and larger amounts of CO2 or H2O for propane and neopentane. The different natures of CO2 and H2O are reflected in the synthesis gas composition as in the ordinary catalytic reforming processes at higher temperatures: higher H2 yields and higher H2 to CO ratios on addition of H2O.  相似文献   

7.
The effects of ZrO2 content on the CO oxidation activity in a series of CuOx/CexZr1−xO2 (x = 0, 0.15, 0.5, 0.7 and 1) catalysts were investigated, both in the absence and in the presence of H2, i.e. preferential CO oxidation—PROX. The investigation was performed under light-off conditions to focus the effects of transients and shut-down/start-up cycles on the performance; such phenomena are expected to affect the activity of PROX catalysts in small/delocalised fuel reformers. Evidence has been obtained for a transition from an “oxidized” towards a “reduced” state of the catalyst under the simulated PROX reaction conditions as a function of the reaction temperature, leading to different active species under the reaction conditions. Both CO oxidation activity and PROX selectivity appear to be affected by this process. IR characterisation of the surface copper species suggests an important role of reduced cerium sites in close contact with copper clusters on the CO oxidation activity at low temperatures.  相似文献   

8.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   

9.
Catalytic partial oxidation of methane to synthesis gas over ZrO2 and yttrium-stabilized zirconia (YSZ) is studied using O2 and N2O as oxidants. ZrO2 is much more active than YSZ in oxidation of methane with N2O. In contrast, YSZ is significantly more active than ZrO2 when O2 is used as an oxidant. The presence of O2 does not influence the rate of N2O decomposition over ZrO2 and YSZ, while the presence of H2O in the system decreases N2O conversion significantly. O2 and N2O are activated at different active sites. Y-induced oxygen vacancies are active for O2 activation, whereas oxygen co-ordinatively unsaturated Zr cations (Zr-CUS) located at corners, edges, steps and kinks are responsible for N2O activation. These sites are also capable of dissociating H2O, resulting in competition between H2O and N2O. As compared with N2O, molecular O2 is easier to be activated over YSZ and ZrO2.  相似文献   

10.
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.

When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition.  相似文献   


11.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

12.
A novel process concept called tri-reforming of methane has been proposed in our laboratory using CO2 in the flue gases from fossil fuel-based power plants without CO2 separation [C. Song, Chemical Innovation 31 (2001) 21–26]. The proposed tri-reforming process is a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane in a single reactor for effective production of industrially useful synthesis gas (syngas). Both experimental testing and computational analysis show that tri-reforming can not only produce synthesis gas (CO + H2) with desired H2/CO ratios (1.5–2.0), but also could eliminate carbon formation which is usually a serious problem in the CO2 reforming of methane. These two advantages have been demonstrated by tri-reforming of CH4 in a fixed-bed flow reactor at 850 °C with supported nickel catalysts. Over 95% CH4 conversion and about 80% CO2 conversion can be achieved in tri-reforming over Ni catalysts supported on an oxide substrate. The type and nature of catalysts have a significant impact on CO2 conversion in the presence of H2O and O2 in tri-reforming in the temperature range of 700–850 °C. Among all the catalysts tested for tri-reforming, their ability to enhance the conversion of CO2 follows the order of Ni/MgO > Ni/MgO/CeZrO > Ni/CeO2 ≈ Ni/ZrO2 ≈ Ni/Al2O3 > Ni/CeZrO. The higher CO2 conversion over Ni/MgO and Ni/MgO/CeZrO in tri-reforming may be related to the interaction of CO2 with MgO and more interface between Ni and MgO resulting from the formation of NiO/MgO solid solution. Results of catalytic performance tests over Ni/MgO/CeZrO catalysts at 850 °C and 1 atm with different feed compositions confirm the predicted equilibrium conversions based on the thermodynamic analysis for tri-reforming of methane. Kinetics of tri-reforming were also examined. The reaction orders with respect to partial pressures of CO2 and H2O are different over Ni/MgO, Ni/MgO/CeZrO, and Ni/Al2O3 catalysts for tri-reforming.  相似文献   

13.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

14.
In this study, a novel bifunctional catalyst IrFe/Al2O3, which is very active and selective for preferential oxidation of CO under H2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al2O3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al2O3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al2O3 > co-IrFe/Al2O3 > FeIr/Al2O3. The three catalysts were characterized by XRD, H2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al2O3, the resulting structure (IrFe/Al2O3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O2 activation on the FeOx species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O2 adsorbed on FeOx sites; the reaction may take place at the interface of Ir and FeOx or via a spill-over process.  相似文献   

15.
We compare the effects of adding large amounts of H2 to 3 ms partial oxidation reactions, ethane to ethylene, propane to olefins, and methane and ammonia to HCN. It is found that H2 can be safely added at the 2/1 H2/O2 stoichiometry in the presence of these fuels without any homogeneous reactions, flames, or explosions. For all of these systems the addition of H2 increases the selectivities to the desired products while strongly decreasing CO and CO2. Addition of H2 forces water formation near the front face of the catalyst which consumes O2 and allows dehydrogenation processes to dominate.  相似文献   

16.
流化床富氧燃烧湿烟气循环兼具经济与环保优势。湿烟气循环(O2/CO2/H2O)条件下煤焦与O2、CO2及H2O的反应同时发生。为探究O2/CO2/H2O气氛下煤焦-O2、煤焦-CO2、煤焦-H2O反应间的相互作用机制,在自制高精度热重实验装置上系统考察了O2、CO2、H2O及其混合气氛下,典型烟煤焦在900℃的反应特性。基于吸附和脱附原理的Langmuir-Hinshelwood(L-H)机理性模型分别计算了烟煤焦与O2、CO2和H2O反应的动力学参数。通过采用单独活性位点与竞争活性位点两种假设分析了O2/CO2、O2/H2O和CO2/H2O气氛下烟煤焦-O2、烟煤焦-CO2和烟煤焦-H2O两两反应间的作用机制,揭示了H2O分子优先吸附于烟煤焦表面活性位点,O2分子次之,而CO2分子相对滞后。O2/CO2/H2O气氛下烟煤焦-O2、烟煤焦-CO2、烟煤焦-H2O反应表现出部分竞争反应活性位点,传统的单独活性位点与竞争活性位点假设均无法准确描述其反应速率特性。基于H2O分子优先,O2分子次优先吸附的原理,建立了O2、CO2、H2O混合气氛下煤焦反应速率L-H动力学方程,方程计算结果与实验值良好吻合。研究结果为深入分析煤焦颗粒流化床富氧燃烧特性及构建可靠、准确的燃烧反应模型提供了理论支撑。  相似文献   

17.
The influence of the addition of 5 vol.% of carbon monoxide, hydrogen, carbon dioxide or water to the feed of partial oxidation of methane was investigated over Ni/γ-Al2O3 and Rh/γ-Al2O3 catalysts. In addition to catalytic tests, thermodynamic calculations were performed to predict the effect of these gas co-feeds. Compared to the thermodynamic trends, differences in the influence of the co-feeding on catalytic performances were observed between both catalysts. Co-feeding of CO, H2, CO2 or H2O can modify the oxidation state and dispersion of the metal component of the catalysts during reaction, and as a consequence, their performances. Changes in catalysts can be due to dynamic processes occurring during reaction. It is suggested to take these processes into account in a more complex kinetic equation for the reactions involved.  相似文献   

18.
Self-standing porous silica thin films with different pore structures were synthesized by a solvent evaporation method and used as photocatalysts for the photocatalytic reduction of CO2 with H2O at 323 K. UV irradiation of these Ti-containing porous silica thin films in the presence of CO2 and H2O led to the formation of CH4 and CH3OH as well as CO and O2 as minor products. Such thin films having hexagonal pore structure exhibited higher photocatalytic reactivity than the Ti-MCM-41 powder catalyst even with the same pore structure. From FTIR investigations, it was found that these Ti-containing porous silica thin films had different concentrations of surface OH groups and showed different adsorption properties for the H2O molecules toward the catalyst surface. Furthermore, the concentration of the surface OH groups was found to play a role in the selectivity for the formation of CH3OH.  相似文献   

19.
The kinetics of CO oxidation and NO reduction reactions over alumina and alumina-ceria supported Pt, Rh and bimetallic Pt/Rh catalysts coated on metallic monoliths were investigated using the step response technique at atmospheric pressure and at temperatures 30–350°C. The feed step change experiments from an inert flow to a flow of a reagent (O2, CO, NO and H2) showed that the ceria promoted catalysts had higher adsorption capacities, higher reaction rates and promoting effects by preventing the inhibitory effects of reactants, than the alumina supported noble metal catalysts. The effect of ceria was explained with adsorbate spillover from the noble metal sites to ceria. The step change experiments CO/O2 and O2/CO also revealed the enhancing effect of ceria. The step change experiments NO/H2 and H2/NO gave nitrogen as a main reduction product and N2O as a by-product. Preadsorption of NO on the catalyst surface decreased the catalyst activity in the reduction of NO with H2. The CO oxidation transients were modeled with a mechanism which consistent of CO and O2 adsorption and a surface reaction step. The NO reduction experiments with H2 revealed the role of N2O as a surface intermediate in the formation of N2. The formation of NN bonding was assumed to take place prior to, partly prior to or totally following to the NO bond breakage. High NO coverage favors N2O formation. Pt was shown to be more efficient than Rh for NO reduction by H2.  相似文献   

20.
Oxidation kinetics of natural (110) diamond by oxygen and water were investigated using in situ Fizeau interferometry. Apparent activation energies of 53 and 26 kcal mol−1 were obtained for the etching of (110) type Ia diamond by O2 and H2O respectively. The etch rate was found to follow second-order kinetics with respect to O2 pressure in the pressure range 0.04–10 Torr. For water over the vapour pressure range 0.1–2 Torr, the reaction has a reaction order near unity. The diamond (110) surface was impervious to etching by molecular fluorine at all temperatures up to 1300 °C. Fluorine, hydrogen fluoride and water were found to inhibit the molecular oxygen etching of diamond. Below 900 °C, oxidation is inhibited by the addition of F2 and HF presumably by blocking reactive sites on the diamond surface through formation of C---F bonds. Above 900 °C, the fluorine is thought to desorb from the diamond (110) surface, rendering the surface susceptible to further oxidation. Addition of water below 800 °C was found to retard etching by molecular oxygen. This is attributed to the formation of C---OH bonds, analogous to C---F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号