首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The temporal relationship between testicular maturation and salmon gonadotropin-releasing hormone (sGnRH) mRNA expression was investigated in underyearling precocious male masu salmon, Oncorhynchus masou. Testicular maturation could be experimentally manipulated by changing the length of the light-dark photoperiod; maturation was accelerated in the short photoperiod group (8L-16D) and delayed in the long photoperiod group (16-8D). sGnRH mRNA and total silver grains in these loci in individual fish, increased with advancing testicular maturation. They were maximal in the short photoperiod group in August and in the long photoperiod group in September, when spermiation occurred. In contrast, marked changes in sGnRH synthetic activity in relation to testicular maturation were not observed in the terminal nerve ganglion or in the olfactory bulbs. sGnRH neurons in the preoptic area and the ventral telencephalon are clearly influenced by photoperiod and are involved in the control of gonadal maturation probably via gonadotropin secretion.  相似文献   

2.
3.
4.
Neuronal precursor cells persist in the adult vertebrate forebrain, residing primarily in the ventricular/subventricular zone (SZ). In vivo, SZ precursors yield progeny which may die or give rise to glia. Yet they may also generate neurons, which are recruited to restricted regions such as the avian telencephalon and mammalian olfactory bulb. The survival of neurons arising from adult progenitors is dictated by both the availability of a permissive pathway for migration and the environment into which migration occurs. In the songbird higher vocal center (HVC), both humoral and contact-mediated signals modulate the migration and survival of new neurons, through an orchestrated set of hormonally regulated paracrine interactions. New neurons of the songbird brain depart the SZ to enter the brain parenchyma by migrating upon radial guide fibers, which emanate from cell bodies in the ventricular epithelium. The radial guide cells coderive with new neurons from a common progenitor, which is widespread throughout the songbird SZ. Neural precursors are also widely distributed in the adult mammalian SZ, although it is unclear whether avian and mammalian progenitor cells are homologous: Whereas neuronal recruitment persists throughout much of the songbird forebrain, in mammals it is limited to the olfactory bulb. In humans, the adult SZ appears to largely cease neurogenesis in vivo, although it, too, can produce neurons in vitro. In both rats and humans, the differentiation and survival of neurons arising from the postnatal SZ may be regulated by access to postmitotic trophic factors. Indeed, serial application of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) has allowed the generation and maintenance of neurons from the adult human SZ. This suggests the feasibility of inducing neurogenesis in the human brain, both in situ and through implanted progenitors. In this regard, using cell-specific neural promoters coupled to fluorescent reporters, defined progenitor phenotypes may now be isolated by fluorescence-activated cell sorting. Together, these findings give hope that structural brain repair through induced neurogenesis and neurogenic implants will soon be a clinical reality.  相似文献   

5.
In the mammalian brain, an important phase of neurogenesis occurs postnatally in the subventricular zone (SVZ). This region consists of a heterogeneous population of cells, some mitotically active, others postmitotic. A subset of mitotically active SVZ precursor cells gives rise to a population of neurons that migrates over a long distance to their final destination, the olfactory bulb. Other SVZ precursor cells continue to proliferate or undergo cell death. The combination of genes that regulates proliferation and cell fate determination of SVZ precursor cells remains to be identified. We have used the rat homolog of the human homeobox gene PBX1 in Northern analysis and in situ hybridization studies to determine the temporal and regional localization of PBX1 expression during embryonic and postnatal rat brain development. PBX1 is expressed embryonically in the telencephalon. In addition, it is expressed at high levels postnatally in the SVZ, in the migratory pathway to the olfactory bulb, and in the layers of the olfactory bulb that are the targets of these migratory neurons. Combining in situ hybridization for PBX1 with immunostaining for markers of cell proliferation (PCNA), postmitotic neurons (class III beta-tubulin), and glia (GFAP), we show that SVZ proliferating cells and their neuronal progeny express rat PBX1 mRNA, whereas glial cells do not express detectable levels of PBX1. The expression of PBX1 in SVZ precursor cells and postmitotic neurons suggests a role for PBX1 in the generation of olfactory bulb interneurons and in mammalian neurogenesis.  相似文献   

6.
Full expression of testosterone (T) actions in the brain requires both direct binding to androgen receptors (AR) and in situ aromatization to estradiol (E2). To determine the cellular basis of constitutively high aromatase and AR binding activities in teleost fish brain, and the neuroanatomic location and spatial relations of cells of each type, an immunocytochemical mapping study of goldfish (Carassius auratus) brain was carried out using antibodies to human placental aromatase and human/rat AR peptide and the avidin-biotin-peroxidase technique. Both antibodies specifically labeled cells that were neuronal in appearance and were most numerous in reproductive control centers: medial and ventral telencephalon (TEL) and preoptic and hypothalamic periventricular nuclei. Additional populations of aromatase- and AR-labeled cells were present in the olfactory bulbs, central telencephalon, and stratum periventriculare of the optic tectum. Anti-aromatase, but not anti-AR, labeled fiber tracts and fibrous layers in visual and auditory pathways, and perikarya and processes of premotor neurons known to integrate sensory input (reticulospinal neurons, Mauthner cells). Anti-AR selectively labeled lateral TEL regions, the nucleus ventromedialis thalami, and discrete cell clusters in the medial tegmental nucleus. Aromatase-immunoreactivity (-ir) was primarily cytoplasmic, whereas AR-ir was primarily nuclear, but relative intensity of nuclear vs cytoplasmic labeling with each antibody differed by brain region. Aromatase- and AR-ir cells were not obviously more numerous in goldfish brain than previously seen in birds and mammals, suggesting that enhanced expression occurs on a per cell basis. We conclude that T exerts its actions coordinately via direct and indirect pathways in most brain regions but independently via AR- or aromatase-mediated mechanisms in selected areas. These studies point to a wide role for androgen in modulating primary sensory signals as well as in classical reproductive processes.  相似文献   

7.
Glutathione (GSH) is considered the primary molecule responsible for peroxide removal from the brain. Inhibition of its rate-limiting synthetic enzyme, glutamylcysteine synthetase (GCS), results in morphological damage to both cortical and nigral neurons in rodents. Here, we report cloning of the catalytic heavy chain GCS mRNA from mouse and its localization in the murine brain. Heavy chain GCS appears to be localized in glial populations in the hippocampus, cerebellum and olfactory bulb, with lower levels of expression in the cortex and substantia nigra. Variations in GCS levels and subsequent GSH synthesis may explain differences in susceptibility to neuropathology associated with oxidative stress noted in these various brain regions.  相似文献   

8.
The distribution of various opioid peptides derived from proenkephalin A and B was studied in the brain of the African lungfish Protopterus annectens by using a series of antibodies directed against mammalian opioid peptides. The results show that both Metenkephalin- and Leu-enkephalin-immunoreactive peptides are present in the lungfish brain. In contrast, enkephalin forms similar to Met-enkephalin-Arg-Phe, or Met-enkephalin-Arg-Gly-Leu, as well as mammalian alpha-neoendrophin, dynorphin A (1-8), dynorphin A (1-13), or dynorphin A (1-17) were not detected. In all major subdivisions of the brain, the overwhelming majority of Met-enkephalin- and Leu-enkephalin-immunoreactive cells were distinct. In particular, cell bodies reacting only with Leu-enkephalin antibodies were detected in the medial subpallium of the telencephalon, the griseum centrale, the reticular formation, the nucleus of the solitary tract, and the visceral sensory area of the rhombencephalon. Cell bodies reacting only with Met-enkephalin antibodies were found in the lateral subpallium of the telencephalon, the caudal hypothalamus, and the tegmentum of the mesencephalon. The preoptic periventricular nucleus of the hypothalamus exhibited a high density of Metenkephalin-immunoreactive neurons and only a few Leu-enkephalin-immunoreactive neurons. The distribution of Met-enkephalin- and Leu-enkephalin-immunoreactive cell bodies and fibers in the lungfish brain showed similarities to the distribution of proenkephalin A-derived peptides described previously in the brain of land vertebrates. The presence of Met-enkephalin- and Leu-enkephalin-like peptides in distinct regions, together with the absence of dynorphin-related peptides, suggests that, in the lungfish, Met-enkephalin and Leu-enkephalin may originate from distinct precursors.  相似文献   

9.
We unilaterally destroyed the nasal radix of rat embryos on day 15.5 of gestation (E15.5) in utero so as to block the olfactory inputs to the ipsilateral forebrain vesicle. The embryonic brains were examined after 6 days' survival (E21.5). In the deafferented half of the brain, LHRH neurons were significantly reduced in number, indicating the successful blocking of the olfactory input. On the deafferented side, the olfactory bulb failed to develop, and the telencephalic hemisphere, small in size, accompanied various histogenetic retardations in the primary olfactory cortex, in the cortical plate, and in the hippocampal formation. The striatum revealed remarkable structural differences between the ipsilateral and contralateral sides: on the ipsilateral side, the striatum was small in size and displayed numerical reductions of immunoreactive tyrosine hydroxylase (TH) fibers and substance P (SP) neurons in comparison with those in the contralateral one; in the substantia nigra, TH neurons and SP fibers were less numerous on the deafferented side. There were no remarkable differences in the distribution of TH neurons in the hypothalamus. In view of these sequential histogenetic alterations, it can be assumed that the olfactory inputs play a key role in the telencephalic morphogenesis.  相似文献   

10.
The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain: (i) a ubiquitous genetic marker, (ii) a neuron-specific transgene, and (iii) a lipophilic-dye were used to follow the fate of postnatal day 5-10 SVZ cells grafted into embryonic mouse brain ventricles at day 15 of gestation. Graft-derived cells were found at multiple levels of the neuraxis, including septum, thalamus, hypothalamus, and in large numbers in the midbrain inferior colliculus. We observed no integration into the cortex. Neuronal differentiation of graft derived cells was demonstrated by double-staining with neuron-specific beta-tubulin antibodies, expression of the neuron-specific transgene, and the dendritic arbors revealed by the lipophilic dye. We conclude that postnatal SVZ cells can migrate through and differentiate into neurons within multiple embryonic brain regions other than the olfactory bulb.  相似文献   

11.
Ontogenetic differentiation of the GnRH-immunoreactive (GnRHir) neuron system was studied in the clawed toad Xenopus laevis by immunocytochemistry employing polyclonal antibodies against mammalian GnRH and chicken type II GnRH, and monoclonal antibodies against GnRH exhibiting wide cross-reactivity over animal classes. Toads at different stages of differentiation as well as postmetamorphic toads subjected to uni- or bilateral ablation of the olfactory placode (OPX) between developmental stages 25 and 30 were studied. GnRHir neurons and nerve fibers could not be detected before metamorphosis. Following metamorphosis, at stage 65-66, hemi-OPX toads did not exhibit any side differences in the number and overall distribution of the GnRHir neuronal structures; however, the total number of GnRHir neurons was approximately 50% of that counted in intact controls at the same developmental stages. These findings indicate that GnRHir neuroblasts differentiating on one side in the olfactory placode can appear on both sides of the brain in the course of their migration.  相似文献   

12.
The intravenous, short-acting general anesthetic propofol was applied to three-dimensional (aggregating) cell cultures of fetal rat telencephalon. Both the clinically used formulation (Disoprivan, ICI Pharmaceuticals, Cheshire, England) and the pure form (2,6-diisopropylphenol) were tested at two different periods of brain development: immature brain cell cultures prior to synaptogenesis and at the time of intense synapses and myelin formation. At both time periods and for clinically relevant concentrations and time of exposure (i.e., concentrations > or = 2.0 micrograms/ml for 8 hr), propofol caused a significant decrease of glutamic acid decarboxylase activity. This effect persisted after removal of the drug, suggesting irreversible structural changes in GABAergic neurons. The gamma-aminobutyric acid type A (GABAA) blocking agents bicuculline and picrotoxin partially attenuated the neurotoxic effect of propofol in cultures treated at the more mature phase of development. This protective effect was not observed in the immature brain cells. The present data suggest that propofol may cause irreversible lesions to GABAergic neurons when given at a critical phase of brain development. In contrast, glial cells and myelin appeared resistant even to high doses of propofol.  相似文献   

13.
The distribution of tyrosine hydroxylase-like immunoreactivity has been studied in the central nervous system of the tench (Tinca tinca) using a monoclonal antibody and the avidin-biotin-immunoperoxidase technique. Immunoreactive elements were found in all brain subdivisions. Thus, catecholaminergic neurons and fibers were detected in most nuclei of the ventral telencephalon and in the pars centralis and lateralis of the dorsal telencephalon. The diencephalon was the brain subdivision where largest density of immunoreactive elements were found, mainly located in the periventricular region. The mesencephalon and metencephalon only demonstrated immunoreactive fibers, and no immunoreactive cell bodies were observed in these regions. The myelencephalon showed three groups of immunoreactive neurons located at isthmal level, in the central medullary area, and at the medullary-spinal cord transition area. The distribution of catecholaminergic elements in the tench brain revealed a general pattern shared by most teleosts. The number and distribution of catecholaminergic elements was similar to those described in other teleostean species in the caudal region of the brain. However, noticeable differences were found in areas related to the integration of different sensory information, specially in the telencephalon and diencephalon, suggesting a relationship among the functional level of each sensorial system and the complexity of the catecholaminergic innervation of their integration regions. Additionally, this study revealed the presence of an important number of cerebrospinal fluid-contacting cells in the organum paraventricularis expressing tyrosine hydroxylase that in most investigated teleostean species were tyrosine hydroxylase-immunonegative despite they contained catecholamines. This data argues for distinct evolutionary patterns in the hypothalamic catecholaminergic system among different teleostean species.  相似文献   

14.
Biosynthesis of the neuroactive steroids pregnenolone sulfate (delta5PS) and dehydroepiandrosterone sulfate (DHEAS) is catalyzed by the enzyme hydroxysteroid sulfotransferase (HST), which transfers the sulfonate moiety from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) on the 3-hydroxy site of steroids. Although high concentrations of delta5PS and DHEAS have been detected in the rat brain, the anatomical localization of HST in the CNS has never been determined. Using an antiserum against rat liver HST, we have investigated the distribution of HST-like immunoreactivity in the CNS of the frog Rana ridibunda. Two populations of HST-immunoreactive neurons were observed in the hypothalamus, and several bundles of positive nerve fibers were visualized in the telencephalon and diencephalon. Incubation of frog brain homogenates with [35S]PAPS and [3H]pregnenolone yielded the formation of several 3H,35S-labeled compounds, including delta5PS and testosterone sulfate. When [3H]dehydroepiandrosterone and [35S]PAPS were used as precursors, one of the 3H,35S-labeled metabolites coeluted with DHEAS. Neosynthesis of [3H]delta5PS and [3H]DHEAS was reduced significantly by 2,4-dichloro-6-nitrophenol, a specific inhibitor of sulfotransferases. The present study provides the first immunocytochemical mapping of HST in the brain. Our data also demonstrate for the first time that biosynthesis of the highly potent neuroactive steroids delta5PS and DHEAS occurs in the CNS of nonmammalian vertebrates.  相似文献   

15.
16.
Chain migration of neuronal precursors   总被引:1,自引:0,他引:1  
In the brain of adult mice, cells that divide in the subventricular zone of the lateral ventricle migrate up to 5 millimeters to the olfactory bulb where they differentiate into neurons. These migrating cells were found to move as chains through a well-defined pathway, the rostral migratory stream. Electron microscopic analysis of serial sections showed that these chains contained only closely apposed, elongated neuroblasts connected by membrane specializations. A second cell type, which contained glial fibrillary acidic protein, ensheathed the chains of migrating neuroblasts. Thus, during chain migration, neural precursors moved associated with each other and were not guided by radial glial or axonal fibers.  相似文献   

17.
Inorganic mercury (203Hg2+) was applied to the olfactory chambers or was given i.v. to pike (Esox lucius) and the uptake of the metal in the olfactory system and the brain was examined by autoradiography and gamma spectrometry. Application of 203Hg2+ in the olfactory chambers resulted in an accumulation of the metal in the olfactory nerves and the anterior parts of the olfactory bulbs of the brain. The levels of 203Hg2+ in other brain areas, such as the telencephalon, the optic tecti and the cerebellum, remained low. Application of 203Hg2+ in only one olfactory chamber resulted in an uptake of the metal only in the ipsilateral olfactory nerve and olfactory bulb. Intravenous injection of the 203Hg2+ resulted in a labelling of the olfactory system and the brain, which was much lower than of the blood. These results indicate that the 203Hg2+ is taken up in the olfactory neurones from the olfactory receptor cells in the olfactory rosettes and is transported to the terminal parts of the olfactory neurones in the olfactory bulbs. The uptake of mercury as well as some other metals in the olfactory system may result in noxious effects and this may be an important component in the toxicology of metals in fish.  相似文献   

18.
Serotonin2 receptors have been implicated in a variety of behavioral and physiological processes, as well as a number of neuropsychiatric disorders. To specify the brain regions and specific cell types possessing serotonin2 receptors, we conducted an immunocytochemical study of the rat brain using a polyclonal serotonin2 receptor antibody. Perfusion-fixed rat brain sections were processed for immunocytochemistry and reactivity was visualized using an immunoperoxidase reaction. Numerous small, round neurons were heavily labeled in the granular and periglomerular regions of the olfactory bulb. Heavy labeling of medium-sized multipolar and bipolar neurons was also seen in olfactory regions of the ventral forebrain, including the anterior olfactory nucleus and olfactory tubercle. Other regions of the basal forebrain exhibiting high levels of immunoreactivity were the nucleus accumbens, ventral pallidum, Islands of Calleja, fundus striatum and endopyriform nucleus. Immunoreactive neurons were also seen in the lateral amygdala. A dense band of small, round cells was stained in layer 2 of pyriform cortex. In neocortex, a very sparse and even distribution of bipolar and multipolar neurons was seen throughout layers II-VI. A much more faintly labeled population of oval cells was observed in the deep layer of retrosplenial and posterior cingulate cortex, and in the granular layer of somatosensory frontoparietal cortex. A moderate number of medium bipolar and multipolar cells were scattered throughout the neostriatum, and a moderate number of pyramidal and pyramidal-like cells were seen in the CA fields of the hippocampus. Diencephalic areas showing immunolabeling included the medial habenula and anterior pretectal nucleus, with less labeling in the ventral lateral geniculate. In the hindbrain, two dense populations of large multipolar cells were heavily labeled in the pedunculopontine and laterodorsal tegmental nuclei, with lesser labeling in the periaqueductal gray, superior colliculus, spinal trigeminal nucleus and nucleus of the solitary tract. Based on the distribution, localization and morphology of immunoreactive neurons in these regions, we hypothesize that subpopulations of serotonin2 containing cells may be GABAergic interneurons or cholinergic neurons. Further, the observed distribution suggests that the physiological effects of serotonin acting through serotonin2 receptors are mediated by a relatively small number of cells in the brain. These observations may have strong functional implications for the pharmacological treatment of certain neuropsychiatric disorders.  相似文献   

19.
In simple nervous systems, identified groups of neurons can be studied in depth. To allow the same advantage in the mammalian brain, we have generated green fluorescent protein (GFP) transgenic mice in which only a few types of neurons are strongly labeled with a fluorescent molecule, which the neurons synthesize internally, allowing the cells, their dendrites, filopodia, and axons to be identified in both living and fixed CNS, in slices and culture. The same neurons, with GFP expression controlled by part of the major immediate early promoter of human cytomegalovirus (CMV), show GFP beginning early in development, from one generation to the next, allowing cellular and physiological studies of axonal and dendritic growth, fate mapping, anatomical connections, and synapse formation in identified neurons. The human CMV promoter sequence we used was different from that used in previous work with other reporter genes and gave a dramatically different pattern of expression. Two transgenic lines with the same CMV promoter show similar anatomical patterns of expression in the present study. Strong GFP labeling was found in a subpopulation of mossy fibers that innervated parasagittal bands in the cerebellar cortex and olfactory axons that projected into the olfactory bulb, subsets of motoneurons and dorsal root ganglion cells, granule but not mitral cells of the olfactory bulb, and a group of neurons in the hypothalamic suprachiasmatic nucleus. A novel type of neuron was strongly labeled in the olfactory bulb external plexiform layer. In normal brains, CMV does not constitute a threat, but in the developing brain, CMV can cause debilitating neurodegeneration and death; studies using the CMV promoter aid in understanding the affinity of CMV that has been suggested for specific brain regions.  相似文献   

20.
Mash1 regulates neurogenesis in the ventral telencephalon   总被引:1,自引:0,他引:1  
Previous studies have shown that mice mutant for the gene Mash1 display severe neuronal losses in the olfactory epithelium and ganglia of the autonomic nervous system, demonstrating a role for Mash1 in development of neuronal lineages in the peripheral nervous system. Here, we have begun to analyse Mash1 function in the central nervous system, focusing our studies on the ventral telencephalon where it is expressed at high levels during neurogenesis. Mash1 mutant mice present a severe loss of progenitors, particularly of neuronal precursors in the subventricular zone of the medial ganglionic eminence. Discrete neuronal populations of the basal ganglia and cerebral cortex are subsequently missing. An analysis of candidate effectors of Mash1 function revealed that the Notch ligands Dll1 and Dll3, and the target of Notch signaling Hes5, fail to be expressed in Mash1 mutant ventral telencephalon. In the lateral ganglionic eminence, loss of Notch signaling activity correlates with premature expression of a number of subventricular zone markers by ventricular zone cells. Therefore, Mash1 is an important regulator of neurogenesis in the ventral telencephalon, where it is required both to specify neuronal precursors and to control the timing of their production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号