首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.  相似文献   

2.
《Composites Part A》2001,32(5):655-662
This paper describes an experimental procedure used to determine the stiffness properties of two different composites made of braided glass and hybrid carbon–glass fibre reinforced epoxy resin. Tubular specimens manufactured by reinforcing an epoxy resin system with commercial braided preforms were used to determine the elastic constants. All specimens were manufactured using compression moulding technique assisted with internal pressure. The stiffness properties were determined from axial and circumferential strains recorded from strain gauges using internal water pressure tests. Identical types of composite laminates were used to manufacture two prototypes of a composite femoral prosthesis with controlled stiffness.  相似文献   

3.
利用聚碳酸酯(PC)改性环氧树脂(Ep)基体,以改善其玻璃纤维复合材料的力学性能,并通过与夹层基体的对比研究,考察了复合材料力学性能与界面作用的相互关系。研究了PC/Ep共混物基体的反应特性和冲击性能,并对不同的基体考察了单向连续玻璃纤维增强复合材料的预浸料制备工艺、复合材料成型工艺及最终材料的力学性能。结果表明,PC/Ep共混物基体在制备工艺和最终材料性能上均优于夹层基体。  相似文献   

4.
Poly(styrene-co-acrylonitrile) (SAN) was used to modify diglycidyl ether of bisphenol-A (DGEBA) type epoxy resin cured with diamino diphenyl sulfone (DDS) and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRPs) in order to get improved mechanical and thermal properties. E-glass fibre was used as the fibre reinforcement. The morphology, dynamic mechanical and thermal characteristics of the systems were analyzed. Morphological analysis revealed heterogeneous dispersed morphology. There was good adhesion between the matrix polymer and the glass fibre. The dynamic moduli, mechanical loss and damping behaviour as a function of temperature of the systems were studied using dynamic mechanical analysis (DMA). DMA studies showed that DDS cured epoxy resin/SAN/glass fibre composite systems have two Tgs corresponding to epoxy rich and SAN rich phases. The effect of thermoplastic modification and fibre loading on the dynamic mechanical properties of the composites were also analyzed. Thermogravimetric analysis (TGA) revealed the superior thermal stability of composite system.  相似文献   

5.
This investigation focuses on nanoparticle filtration in the processing of multiscale carbon and glass fibre composites via resin transfer moulding. Surface modified and unmodified carbon nanotubes (CNTs) were incorporated into a commercial epoxy resin. The dispersion quality was evaluated using electrical measurements of the liquid suspensions. The manufacturing process was adapted to the challenges posed by the modified rheological behaviour of the CNT loaded resin. Nanoparticle filtration was observed; with some of the unmodified systems following so called ‘cake filtration’ behaviour. This resulted in nonlinear flow behaviour that deviated from the ideal response observed in RTM filling in conventional composites. The electrical conductivity of relatively high fibre volume fraction multiscale carbon and glass laminates increased by less than an order of magnitude with the addition of the nanotubes.  相似文献   

6.
Self-healing is receiving an increasing amount of worldwide interest as a method to autonomously address damage in materials. The incorporation of a self-healing capability within fibre-reinforced polymers has been investigated by a number of workers previously. The use of functional repair components stored inside hollow glass fibres (HGF) is one such bioinspired approach being considered. This paper considers the placement of self-healing HGF plies within both glass fibre/epoxy and carbon fibre/epoxy laminates to mitigate damage occurrence and restore mechanical strength. The study investigates the effect of embedded HGF on the host laminates mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact damage. The results of flexural testing have shown that a significant fraction of flexural strength can be restored by the self-repairing effect of a healing resin stored within hollow fibres.  相似文献   

7.
The practical application of composite materials for retrofitting of reinforced concrete bridge T-sectional girders was investigated. Carbon and glass fibre-reinforced polymers (CFRP and GFRP) saturated in an epoxy resin matrix were used to enhance the service load-carrying capacity of the bridge. Three 5-m-long simply supported beams were tested under monotonic and cyclic loads for comparison to a beam subjected to more than 106 cycles in the service load range. The results show that an FRP-strengthened T-beam subjected to fatigue loading demonstrated excellent behaviour that can be expected from well-detailed retrofit schemes incorporating carbon and glass fibre laminates.  相似文献   

8.
《材料科学技术学报》2019,35(10):2169-2177
Two different types of graphene flakes were produced following solution processing methods and dispersed using shear mixing in a bifunctional (A) and a multifunctional (B) epoxy resin at a concentration of 0.8 and 0.6 wt%, respectively. The graphene/epoxy resin mixtures were used to impregnate unidirectional carbon fibre tapes. These prepregs were stacked (seven plies) and cured to produce laminates. The interlaminar fracture toughness (mode-I) of the carbon fiber/graphene epoxy laminates with resin B showed over 56% improvement compared with the laminate without graphene. Single lap joints were prepared using the laminates as adherents and polyurethane adhesives (Sika 7666 and Sika 7888). The addition of graphene improved considerably the adhesion strength from 3.3 to 21 MPa (sample prepared with resin A and Sika 7888) highlighting the potential of graphene as a secondary filler in carbon fibre reinforced polymer composites.  相似文献   

9.
The aim of this study was to understand the role of the processing in determining the mechanical properties of glass fibre reinforced polybutylene terephthalate composites (Glass/PBT). Unidirectional (UD) composite laminates were manufactured by the vacuum consolidation technique using three different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final mechanical properties which were evaluated by through compression, flexural and short beam transverse bending tests. Microscopy was used to evaluate the quality of the processed laminates, and fractography was used to characterize the observed failure modes. The study provides an improved understanding of the relationships between processing methods, resin characteristics, and mechanical performance of thermoplastic resin composite materials.  相似文献   

10.
The wear behaviour of composite materials, sliding under dry conditions against smooth steel counterface, has been investigated. The composite materials consisted of glass woven fabric reinforcing three different systems of matrix: epoxy resin, epoxy resin filled with powders of silica and epoxy resin filled with powders of tungsten carbide. The powders were mixed in a volumetric fraction of 6% with the epoxy resin. Three laminates were manufactured by hand lay up technology. The sliding tests have been conducted on the specimens, cut from the three laminates, with a pin on disk apparatus. The results put in evidence different wear behaviours of the composite materials observed at different values of sliding speed and pressure. The presence of different wear mechanisms has been appreciated by SEM-micrographic examinations.  相似文献   

11.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

12.
Bond-phase defects in laminates can affect the mechanical properties of laminate composites. In this study, the effects of adhesion area, number of glue spots, and bond thickness on the effective Young's modulus of adhered microscope glass slides have been investigated. Three different adhesive agents (super glue, epoxy cement, and epoxy resin) were used to explore the effect of bond-phase defects upon adhesion in laminates. The elastic moduli of single glass slides, unadhered glass slide pairs, glass slide/glue composite specimens and epoxy resin specimens were non-destructively determined by a sonic resonance technique. The change of Young's modulus of adhered glass slides was monitored while adhesion area per cent ranged from 0.35%–100%. Trends in the Young's moduli of glass slide/glue composite specimens have been analysed by a least-squares best-fit procedure to two empirical equations. Qualitative explanations for the observed trends are discussed in this paper.  相似文献   

13.
The residual tensile strength of glass filled particulate composites has been determined after low energy impact for various energy values. The material systems constructed for the needs of this research consisted of epoxy resin filled with glass beads. The glass beads were either uncoated or alternatively coated with a reactive silane based bonding agent. Specimens with various filler volume fractions were available. The effect of silane coating as well as the filler volume fraction was analytically discussed. Finally, a model developed in previous work for continuous fibre reinforced composite laminates was adopted to describe the residual tensile strength after impact. In most of the cases the predicted curves fit the experimental results very well.  相似文献   

14.
采用超声波振荡与超声波破碎两种分散方法制备了低含量碳纳米管(CNTs)增强的环氧树脂, 研究了CNTs对树脂流变特性、 固化特性和力学性能的影响。进一步采用该树脂体系通过真空灌注工艺(VARIM)制备了CNTs含量为0.01%的CNTs-玻璃纤维/环氧树脂复合材料层板, 研究了两种分散方式下CNTs对复合材料层板力学性能的影响和CNTs的增强机制。结果表明: 超声波破碎分散使CNTs长度变短, 分散性更好, 与超声波振荡分散方式相比, CNTs对树脂增黏效果和树脂固化反应的影响更明显。采用双真空灌注工艺, 两种超声波分散方式下CNTs均提高了复合材料的弯曲性能、 层间剪切性能和树脂与纤维的粘结强度, 而单真空灌注工艺下CNTs的增强效果不明显, 说明受纤维过滤作用的影响, 选择合适的灌注工艺和CNTs分散方式, 低含量CNTs可实现对灌注工艺复合材料层板的增强。  相似文献   

15.
Static tests and ultrasonic measurements (2.25 MHz) have been carried out on a series of composite laminates of glass fibres in a polypropylene matrix. A range of angle ply laminates were prepared for this study, with laminate angles θ of ±0, 10, 20, 30 and 40^∘. The high frequency measurements were made using the ultrasonic immersion technique, which allows the determination of a complete set of the elastic constants of a material. The relationship between the ultrasonically determined elastic constants of the angle ply laminates was found to be in excellent agreement with theoretical predictions, as previously validated for carbon fibre/epoxy angle ply laminates. A comparison between the ultrasonic and statically measured values was made for two of the angle ply laminates (θ = 0 and 20^∘). It was found that the static values were lower than those measured at ultrasonic frequency, particularly those constants that were more matrix dominated (for example the transverse moduli of the laminates). Measurements on a pure polypropylene sample at both testing frequencies confirmed that the change in matrix properties with frequency was the cause of this difference. The change in properties with test frequency is likely to be much larger in this system than in other composite materials because the glass transition temperature of polypropylene is close to ambient temperature. Dynamic mechanical tests (1 Hz) were carried out on a sample of pure polypropylene to assess this effect. We also give an appropriate method of estimating the dependence of glass transition temperature on frequency. The results for polypropylene are compared with those for other commonly used polymer matrix materials: epoxy resin, nylon and polyetheretherketone (PEEK): DMTA measurements were also made on these samples. The effect of test frequency on matrix properties, for the glass/PP laminates, was further investigated by examining the relationship of the Poisson's ratios with laminate angle using a mixture of ultrasonic experiments and theoretical predictions. Previously we have shown that the degree of anisotropy between the reinforcing fibre and the matrix phase is paramount in determining whether the material will show a negative Poisson's ratio at a critical laminate angle. The ultrasonic measurements carried out in this study on the glass/PP laminates showed a minimum in one of the Poisson's ratio at a laminate angle of 32°, but the value did not become negative. However, theoretical predictions showed that for a static frequency measurement (1 Hz), where the matrix is softer and hence the anisotropy of each laminate ply is higher, the laminate will show a negative Poisson's ratio with a minimum at a laminate angle of around 28°.  相似文献   

16.
实验研究表明,纤维束/环氧树脂复合材料试件的横向拉伸强度与工程上常用的单向层合板横向拉伸强度在趋势上具有很好的相关性,但是数值上存在一定差距。本文使用两种碳纤维和两种环氧树脂制备了三种纤维束/环氧树脂复合材料和单向层合板,并分别测量了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度,以及环氧基体的拉伸强度。在实验基础上,应用Griffith断裂强度理论建立了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度的关系模型,通过两种复合材料实验的结果拟合了该模型中的参数。利用第三种复合材料实验进行校验,发现该模型预测的单向层合板横向拉伸强度与实测强度之间达到很好的一致性,相对偏差为9%。采用本文提出的方法,可以用较为简单的纤维束/环氧树脂复合材料和环氧基体拉伸试验预测单向层合板的横向拉伸强度。  相似文献   

17.
《Composites Part A》2007,38(6):1525-1532
Self-healing is receiving increasing interest worldwide as a technology to autonomously address the effects of damage in composite materials. This paper describes the results of four point bend flexural testing (ASTM-D6272-02) of T300/914 carbon fibre reinforced epoxy with resin filled embedded hollow glass fibres (HGF) which provided a self-healing functionality. The study investigated the effect of the embedded HGF on the host CFRP mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact. Specimens were tested in the undamaged, damaged and healed conditions using a commercial two-part epoxy healing agent (Cytec Cycom 823). Microscopic characterisation of the embedded HGF was also undertaken to characterise the effect on the host laminate fibre architecture.  相似文献   

18.
《Composites》1992,23(6):387-395
Two types of cross-ply laminate have been made from prepreg: (a) hybrid matrix laminates consisting of longitudinal plies of glass fibres in epoxy resin and transverse plies of glass fibres in epoxy resin/urethane elastomer blend; and (b) uniform matrix laminates with the same resin in both the longitudinal and transverse plies. The presence of the urethane in the transverse plies increases the applied strains necessary for the initiation and development of transverse cracking during the extension of both hybrid matrix and uniform matrix laminates. The effect is greater with increasing amounts of urethane. The cracking data, stress/strain behaviour, acoustic emission response and ply thickness effects on crack development are discussed in the light of existing theories concerning transverse cracking.  相似文献   

19.
This paper investigates the effect of fibre volume fraction on the fatigue behaviour and damage mechanisms of carbon/epoxy laminates. Epoxy resin and unidirectional carbon/epoxy specimens with two different fibre volume fractions are tested under quasi-static tensile and tension–tension fatigue loads at angles of 0°, 45° and 90°. Fracture surfaces are studied with scanning electron microscopy. The results show that stiffness and strength increase with increasing fibre volume fractions. The damage behaviour of off-axis specimens changes with increasing fibre volume content and the height of the applied cyclic load. While matrix cracking and interfacial debonding are dominating damage mechanisms in specimens with low fibre content, fibre bridging and pull out are monitored with increasing fibre content. The higher the applied load in fatigue tests transverse to fibre direction, the more similar behave specimens with different fibre volume fractions.  相似文献   

20.
The impact and flexural post-impact behaviour of ternary hybrid composites based on epoxy resin reinforced with different types of fibres, basalt (B), flax (F), hemp (H) and glass (G) in textile form, namely FHB, GHB and GFB, has been investigated. The reinforcement volume employed was in the order of 21–23% throughout. Laminates based exclusively on basalt, hemp and flax fibres were also fabricated for comparison. Hybrid laminates showed an intermediate performance between basalt fibre reinforced laminates on the high side, and flax and hemp fibre reinforced laminates on the low side. As for impact performance, GHB appears to be the worst performing hybrid laminate and FHB slightly overperforms GFB. In general, an increased rigidity can be attributed to all hybrids with respect to flax and hemp fibre composites. The morphological study of fracture by SEM indicated the variability of mode of fracture of flax and hemp fibre laminates and of the hybrid configuration (FHB) containing both of them. Acoustic emission monitoring during post-impact flexural tests confirmed the proneness to delamination of FHB hybrids, whilst they were able to better withstand impact damage than the other hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号