首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
《中国测试》2017,(12):88-92
滚动轴承故障产生的早期阶段,故障信号中的周期冲击成分微弱,并且环境噪声干扰严重,导致轴承故障难以识别。针对这一问题,提出基于CEEMD-MED和Teager能量算子的轴承故障特征方法。首先应用互补集合经验模态分解(CEEMD)对故障信号进行分解,依据相关系数原则,选取相关系数最大的分量作为分析对象;然后应用最小熵反褶积(MED)对选出的分量进行降噪;最后应用Teager能量算子对降噪后的信号进行解调处理,从其能量谱中便可准确地获取故障特征信息。通过对仿真信号和实验数据进行诊断分析,结果证明该文方法有效。  相似文献   

2.
如何从含噪振动信号中准确提取微弱周期性故障特征是辨识滚动轴承局部故障的关键。针对此问题,提出一种基于二次聚类分割与Teager能量谱的滚动轴承微弱故障特征提取方法。首先通过傅里叶变换得到故障信号的频谱并利用模糊C均值算法对其进行聚类分割;然后对每个频段进行傅里叶逆变换并计算不同频段时域信号的峭度,选取峭度最大频段对应的时域信号作为滤波信号,对该信号进行第二次聚类分割及傅里叶逆变换,选取最大峭度对应的频段作为通带过滤信号,进一步消除噪声和自然周期性成分的影响;最后采用Teager能量算子对得到的时域故障信号进行解调分析,以获取滚动轴承微弱故障特征频率。仿真分析和实验验证结果表明,该方法能准确有效地提取出滚动轴承微弱故障特征。  相似文献   

3.
为准确提取非线性、非平稳的滚动轴承故障信号中的故障特征,提出基于变分模式分解(Variational Mode Decomposition,VMD)和1.5维Teager能量谱的滚动轴承故障特征提取方法;变分模式分解(VMD)是一种新的信号自适应分解方法,1.5维Teager能量谱具有1.5维谱良好的降噪效果和Teager能量算子强化信号瞬态冲击的优点。故障特征提取过程:首先,对滚动轴承故障信号进行VMD分解得到一组分量,根据峭度-相关系数准则筛选出2个冲击特征明显分量进行信号重构;再次,对重构信号进行1.5维Teager能量谱分析;最后根据能量谱图的分析,提取出滚动轴承的内圈和滚动体故障特征。仿真信号和试验信号的分析都验证了提出方法的有效性;通过与EEMD分解比较,采用VMD变分模式分解和1.5维Teager能量谱的分析方法更具有区分性,可以有效识别滚动轴承的故障特征。  相似文献   

4.
滚动轴承在发生故障时其振动信号会出现调制现象。Teager能量算子相比于Hilbert变换在运算速度和解调精度方面具有明显优势,但其不能提供足够高的分辨率来解调低频调制信号,为此提出复调制细化谱分析方法。通过轴承故障模拟实验,对采集的正常、内圈轻微、严重故障的轴承振动信号进行Teager能量算子解调,然后对其包络进行复调制细化谱分析,得到轴承回转频率及其谐波,内圈故障特征频率及其谐波、边频带。随着轴承内圈故障程度的增加,内圈故障特征频率、边频带的幅值明显增大,可作为滚动轴承内圈点蚀故障特征参数。  相似文献   

5.
裴迪  岳建海  焦静 《振动与冲击》2021,(11):101-108+123
针对滚动轴承(rolling element bearings, REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition, EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function, IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator, TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。  相似文献   

6.
针对滚动轴承早期故障振动信号信噪比低、故障特征提取困难的问题,提出了基于变分模态分解和能量算子的滚动轴承故障特征提取方法。该方法首先对故障信号进行变模态分解(Variational Mode Decomposition,VMD),得到若干本征模态分量(Intrinsic Mode Function,IMF);其次,通过峭度准则选取其中峭度最大的分量进行Teager能量算子解调,得到信号的Teager能量谱。将该方法应用到滚动轴承仿真故障数据和实际数据中,结果表明,该方法提高了信号的分解效率,降低了噪声的影响,能够实现滚动轴承故障的精确诊断,证明了该方法的有效性。  相似文献   

7.
针对滚动轴承早期故障特征非常微弱,易受随机噪声和其他信号干扰而难以提取等现象,提出了用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和变分模态分解(Variational Mode Decomposition,VMD)相结合的方法提取滚动轴承故障特征。首先用MCKD进行信号增强,然后利用VMD得到一系列模态,应用互相关系数和峭度准则筛选包含故障信息较为丰富的模态进行重构降噪,最后对重构信号进行包络解调提取故障特征。通过仿真分析和轴承故障模拟实验验证了该方法的有效性,可以精确地分离轴承故障振动信号的不同频率成分。  相似文献   

8.
针对强噪声情况滚动轴承故障特征较微弱、其故障特征较难提取问题,提出将最小熵反褶积(Minimum Entropy Deconvolution,MED)与快速谱峭度算法(Fast Spectral Kurtosis,FSK)结合用于滚动轴承微弱故障提取。用MED对强噪声滚动轴承振动信号降噪,对降噪后信号进行快速谱峭度计算,确定故障信号共振解调带通滤波器参数,结合能量算子解调包络谱提取故障特征。通过仿真与实验数据验证该方法的有效性。  相似文献   

9.
为解决变转速下正交匹配追踪(OMP)过度匹配和非正交投影的问题,提出优化正交匹配追踪(OOMP)。根据轴承故障振动信号的特性,构建组合时频原子字典与OMP匹配;将鲸鱼优化算法引入到OMP中选择与残差信号匹配的最优原子,实现信号重构和故障特征增强。为避免阶次追踪的缺陷,引入角度-时间(A-T)谱提取故障特征。试验验证,OOMP可有效增强轴承故障特征,A-T谱用于变转速下轴承故障特征提取效果良好。  相似文献   

10.
针对变速器加速过程下轴承故障特征易于暴露难以提取问题,提出一种Teager能量算子增强倒阶次谱方法。计算加速过程等角度重采样信号的Teager能量算子,对Teager能量算子输出进行倒谱分析,获得Teager能量算子增强倒阶次谱。对加速过程滚动轴承外圈、内圈剥落故障信号进行分析,结果表明,Teager能量算子能有效增强冲击成分,抑制非冲击成分;倒阶次谱能从干扰中准确识别被增强的故障冲击特征,提取轴承微弱故障特征。  相似文献   

11.
峰值冲击是轴承故障信号中的重要特征之一,明显的峰值冲击有利于其故障诊断,而低转速工况下轴承故障由于振动能量小,峰值冲击微弱,导致故障特征容易被噪声淹没,通常无法通过包络分析等方法提取。为了增强微弱故障信号中的峰值冲击,提取低转速轴承故障特征,提出了基于Teager峰值能量的故障特征提取方法。采用移动窗口截取原信号,计算截取信号段的峰峰值,从而构造峰峰值特征波形,增强故障信号中的峰值冲击;利用Teager能量算子对峰峰值特征波形进行解调,抑制噪声干扰,提取瞬时冲击成分;根据提取的Teager能量频谱判断轴承的运行状态。实验结果表明,该方法有效提取了低转速轴承的冲击特征,实现了故障的诊断。  相似文献   

12.
滚动轴承早期故障信号中原始冲击成分容易被强噪声淹没,故障特征提取难度较大。针对这一问题,提出了多点最优调整的最小熵解卷积(MOMEDA)与Teager能量算子相结合的滚动轴承故障诊断方法。利用MOMEDA算法对原始故障信号进行滤波处理,通过Teager能量算子增强解卷积信号中的冲击特征,对信号进行包络分析。通过对比包络谱中的主导频率与滚动轴承的故障特征频率判断故障位置,实现轴承的故障诊断。仿真数据与试验数据分析结果表明,该方法能够有效提取故障信号中的特征信息,具有一定的实用性。  相似文献   

13.
针对传输路径复杂和强噪声干扰条件下滚动轴承故障信号信噪比低、微弱故障特征难以提取的问题,提出一种将参数优化变分模态分解(Variational Mode Decomposition,VMD)与最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution, MCKD)相结合的滚动轴承微弱故障特征提取方法。首先,利用经麻雀搜索算法(Sparrow Search Algorithm, SSA)优化的VMD对故障信号进行自适应分解,构建加权峭度指标以筛选有效模态分量;然后对有效模态分量利用经SSA优化后的MCKD进行增强;最后,对增强后的信号进行包络解调分析,提取出轴承故障特征频率。实验和工程实际案例分析表明,所提出的方法能够自适应增强轴承信号中的微弱冲击成分,有效提取出强噪声背景下的滚动轴承微弱故障特征。  相似文献   

14.
周期性冲击是判断滚动轴承局部损伤故障的关键特征,如何提取周期性冲击及其重复频率是轴承故障诊断中的关键问题。Teager能量算子能够估计产生信号所需的总机械能,对信号的瞬态变化具有良好的时间分辨率和自适应能力,在检测信号冲击特征方面具有独特优势。为了提取滚动轴承故障的特征频率,针对滚动轴承故障振动信号中的瞬态冲击特点,提出了基于Teager能量算子的频谱分析方法,利用Teager能量算子提取轴承故障引起的周期性冲击,通过瞬时Teager能量的Fourier频谱识别轴承的故障特征频率。分析了滚动轴承故障仿真信号和实验测试信号,并和包络谱方法进行了对比分析,准确诊断了滚动轴承元件故障,验证了该方法的有效性  相似文献   

15.
针对Teager能量算子在解调滚动轴承早期微弱故障特征中的不足,提出一种最大相关峭度解卷积降噪与Teager能量算子解调相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的峭度最大化为目标对原信号进行降噪处理、检测信号中的周期性冲击成分,然后利用Teager能量算子增强降噪信号中的周期性冲击特征、抑制非冲击成分,最后通过分析Teager能量谱中明显的频率成分来诊断故障类型。滚动轴承外圈、内圈故障诊断实例表明,该方法能有效实现滚动轴承早期微弱故障的识别。  相似文献   

16.
针对行星齿轮箱振动信号故障特征提取困难、幅值和频率调制明显等问题,提出一种基于集合经验模态分解(EEMD)和Teager能量算子的行星齿轮箱故障特征提取方法。新方法首先利用EEMD分解样本信号得到若干本证模量函数(IMF),计算各IMF与原始信号的相关系数和欧式距离,筛选出能够表征原始信号特征的分量。其次,计算筛选后各IMF分量的Teager能量算子,将计算结果进行信号重构。最后,提取重构信号模糊熵及其对应概率密度函数的波形指标,作为基本特征参数进行故障诊断。将所提方法应用于行星齿轮箱实验数据分析,并与常用特征提取方法对比,结果表明:所提出的新方法不仅能有效区分行星齿轮箱故障类型和程度,且识别率优于所对比的方法。  相似文献   

17.
针对滚动轴承早期故障特征信息难以识别以及带通滤波器参数设置依赖使用者经验等造成共振带不能有效确定并自适应提取的问题,提出了频带幅值熵的概念。在此基础上,将双树复小波包变换和Teager能量谱结合,提出了基于双树复小波包变换自适应Teager能量谱的早期故障诊断方法。该方法首先利用双树复小波包将采集到的振动信号进行分解,并计算各子带的频带幅值熵。然后将熵值按升序排列后依次作为阈值,提取频带幅值熵大于或等于阈值的子带,依据峭度指标确定最佳熵阈值和双树复小波包最佳分解层数,从而自适应并有效地提取出共振带。最后对共振带进行Teager能量谱分析,即可从中准确地识别出轴承的故障特征频率。通过信号仿真与工程实验数据分析验证了该方法的有效性与优越性。  相似文献   

18.
在强背景噪声干扰下,快速峭度图提取滚动轴承微弱信号故障的特征效果并不明显。将迭代滤波(Iterative Filtering,IF)和快速峭度图相结合用于滚动轴承的微弱故障特征提取。滚动轴承故障振动信号通过迭代滤波进行自适应分解得到一组内禀模态分量,用迭代滤波对强噪声滚动轴承信号进行降噪处理,用快速峭度图构造最优带通滤波器,将滤波后信号的包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。通过仿真和试验验证了所述方法的有效性及优点。  相似文献   

19.
提出一种基于复包络谱的滚动轴承故障特征提取方法.采用正交采样技术获取滚动轴承同一支撑处互相垂直方向上的振动信号,并将其组成一个复数信号;运用二元经验模态分解(bivariate empirical mode decomposition,BE-MD)将复数信号分解成若干复固有模态函数(complex intrinsic ...  相似文献   

20.
共振解调法的难点在于带通滤波器的确定,谱峭度可根据信号特征寻找最优滤波器参数,很好地解决以上问题。然而谱峭度在对低信噪比数据进行处理时,滤波后的信号往往残留较大带内噪声,极大地影响了后续故障诊断的准确性。针对该问题,提出利用Teager能量算子追踪SK滤波信号的系统总能量,从信号能量的角度消除带内噪声,二次增强隐藏于噪声中的故障冲击特征,最后通过包络谱分析获得诊断结果。应用轴承故障仿真数据、实验室内圈和外圈故障数据验证了本方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号