共查询到20条相似文献,搜索用时 15 毫秒
1.
碳化钛(Ti3C2Tx)作为一种MXene材料,具有独特的结构和优良的导电性、稳定性以及优越的电化学性能,常被用作超级电容器电极材料。本文结合碳化钛(Ti3C2Tx)材料层状结构的特性,梳理了超级电容器电极用Ti3C2Tx基复合材料的研究进展,重点阐述了Ti3C2Tx材料的结构、性能、制备以及通过不同技术手段与多类材料复合后的电化学性能;归纳了Ti3C2Tx基复合材料性能提升的原因,包括增大层间距、提供更多活性位点、提高坚韧性等;最后指出Ti3C2Tx基复合材料的未来研究重点,如探究新的基体母相、丰富刻蚀方法、改进现有复合材料、探究更多更高效的复合材料等。 相似文献
2.
以二维过渡金属碳化物Ti3C2Tx MXene作为填料,非铁电、可生物降解的高分子物质聚乙烯醇(PVA)作为基体,通过溶液涂膜法制备了具有高介电常数的Ti3C2Tx MXene/PVA柔性复合材料。研究了Ti3C2Tx MXene充填量对复合材料介电性能的影响。Ti3C2Tx MXene/PVA复合材料的介电性能变化遵循逾渗规律,随着Ti3C2Tx MXene充填量的增加,Ti3C2Tx MXene/PVA复合材料的介电常数呈先增加后减小的变化规律,Ti3C2Tx MXene充填量为20wt%的Ti3C2Tx MXene/PVA复合材料介电常数在20 Hz时高达577.3,比纯PVA的介电常数(10.5)提升了5 398%。但是,当Ti3C2Tx MXene充填量超过20wt%后,Ti3C2Tx MXene/PVA复合材料的介电常数急剧下降,介电损耗快速上升,表现出明显的逾渗行为。 相似文献
3.
MXene由于具有独特的层状结构、高电子导电性和丰富的表面化学特性,在储能、电磁干扰屏蔽、催化、医药等方面有广泛的应用前景。Ti3C2Tx作为最早发现的MXene材料,其固有的金属导电特征、宽层间距和丰富的表面官能团,引起了钠离子电池领域研究人员的关注。本文综述了近年来Ti3C2Tx基材料在钠离子电池中的研究进展。首先从Ti3C2Tx材料的制备展开,概述多层和少层两类Ti3C2Tx材料的结构与电化学特性。随后结合研究的应用趋势,总结两类Ti3C2Tx材料的层间距改性、掺杂改性、形貌调控等手段对其储钠行为的影响。同时也分析了两类Ti3C2Tx基复合材料应用于钠离子电池负极的结构设计思路,指出合理的结... 相似文献
4.
为了改善聚酰亚胺(PI)的热学性能和冲击断裂强度、弯曲强度和硬度等力学性能,通过液相刻蚀三元层状陶瓷Ti3AlC2制备了二维层状结构纳米Ti3C2Tx,利用XRD、FE-SEM对产物进行了物相分析和微观结构表征;采用湿法球磨和热压成型法制备了不同Ti3C2Tx含量的Ti3C2Tx/PI复合材料,考察了Ti3C2Tx对复合材料热学性能、冲击断裂强度、弯曲强度和硬度等的影响,并分析了断面形貌。结果表明,所制备的Ti3C2Tx为纳米片层结构,片层厚度为20~50 nm,片层堆叠;二维Ti3C2Tx在PI基体中分散均匀,且固化过程中PI进入Ti3C2Tx层间提高了二者之间的结合力,使界面结合良好;Ti3C2Tx纳米片的添加提高了PI的玻璃化转变温度并改善了基体的冲击断裂强度、弯曲强度和硬度等,当Ti3C2Tx添加量为0.25wt%时,Ti3C2Tx/PI复合材料的玻璃化转变温度提高了17℃,冲击断裂强度提高了31%。 相似文献
5.
实现高电磁屏蔽性能的同时降低反射是目前电磁屏蔽材料所追求的。采用一步水热法合成直径为30~40μm,厚度为70~200 nm的Fe3O4纳米片,利用红外光谱、X射线衍射仪、扫描电子显微镜表征发现结晶度良好。改变Fe3O4纳米片含量,喷涂制备的Fe3O4/MXene/WPU复合膜的反射值能低至4.3 dB,反射功率(R)从0.81降至0.63,透射功率(T)仅为10-3数量级。同样,采用水热法制备了直径为180~200 nm、分散性良好的Fe3O4纳米微球。同等Fe3O4含量下纵向对比发现,含Fe3O4纳米片的复合膜电磁屏蔽性能稍高于含Fe3O4纳米球的复合膜。 相似文献
6.
7.
静电纺丝技术是一种新颖、高效且简单的制备连续纳米纤维的方法,纳米复合纤维膜的优异特点赋予了纳米吸波剂新的吸波通道。本文采用静电纺丝工艺制备Fe3O4/PEK-C纳米复合纤维膜,利用SEM和TGA表征纳米复合纤维膜的微观形貌和热稳定性,用矢量网络分析仪测试样品在8.2~12.4 GHz的电磁参数与吸波性能。结果表明,Fe3O4/PEK-C纳米复合纤维膜呈现出超细纤维彼此交织构成的立体网络结构,其热稳定性、复介电常数和复磁导率均随着Fe3O4含量的增加而增加,介电损耗和磁损耗得到加强。当纳米复合纤维膜的厚度为1.8 mm时,其反射损耗在整个测试波段均处于-5 dB以下,-10 dB以下有效吸收频宽为2 GHz,频率在8.6 GHz处吸收强度达到最大值-15.4 dB。预期可作为隐身复合材料的吸波功能层。 相似文献
8.
对二维Ti3C2Tx材料进行了磺酸基团接枝改性(Ti3C2Tx—SO3H),表征了改性前后微观结构的变化,研究了对重金属Pb2+的吸附行为与机制。XRD、FTIR及EDS表明磺酸基团在Ti3C2Tx表面成功接枝,而SEM则发现Ti3C2Tx?SO3H呈现较Ti3C2Tx更轻薄的层状结构。改性后,Ti3C2Tx—SO3H对重金属Pb2+20 min内达到吸附平衡,最大吸附量达到733.6 mg·g?1,较Ti3C2Tx吸附量提升了23%,且吸附量随着pH(2~6)的增加而逐渐增大,在Mg2+、Ca2+、Co2+、Zn2+等共存离子的干扰下,仍保持较高的吸附水平。机制分析表明,改性前后吸附过程均符合准二级动力学模型和Langmuir吸附等温线拟合模型,以单分子层化学吸附为主,但由于磺酸基团提供了更多的吸附饱和活性位点,并提高了Ti3C2Tx在水溶液中的分散性,使改性后对Pb2+吸附性能更优异。 相似文献
9.
采用共沉淀法成功制备出具有超顺磁性的纳米Fe3O4, 并将Fe3O4与SrFe12O19复合制成复合吸波材料Fe3O4-SrFe12O19, 利用X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(PNA)对产物的物相、显微结构、磁性能和吸波性能进行了表征与分析。结果表明, 当Fe3O4与SrFe12O19质量比为1∶0.3时, Fe3O4-SrFe12O19饱和磁化强度为11.1 emu·g-1, 矫顽力0.86 Oe, 剩余磁化强度0.08 emu·g-1, 其吸波性能最佳, 最大吸收峰值为-17.7 dB,-5 dB频宽为1.3 GHz, 较Fe3O4和 SrFe12O19的最大吸收峰值分别提高247%和185%, 频带分别拓宽1.12 GHz和0.40 GHz。 相似文献
10.
Ti3C2Tx基于其金属导电性和表面可调性,被广泛被应用于能量转换与存储领域。通过对比研究盐酸、氢氟酸、氢溴酸及各种酸液组合对Ti3AlC2刻蚀产物Ti3C2的物相、形貌及电化学性能的影响,探索各卤族酸对Ti3AlC2的刻蚀机理。实验结果表明,HCl+HF+H2O混合酸液在60℃下对Ti3AlC2刻蚀结果较佳,刻蚀产物Ti3C2Tx的纯度较高,底液具有类手风琴状;上清液为薄片状,且具有较好的韧性和丁达尔光学效应。通过结合氢氟酸的强腐蚀和盐酸的强酸,在考虑安全与环保的前提下,制备出的Ti3C2Tx纯度高,电化学性能好。 相似文献
11.
为改善氧化石墨烯(GO)/Fe3O4复合材料的分散程度,利用三苯基膦(PPh3)对GO表面进行功能化改性得到改性氧化石墨烯(GOP),然后采用共沉淀法一步合成GOP/Fe3O4复合材料。通过场发射SEM、高分辨TEM、XRD、FTIR、Raman和VSM对GOP/Fe3O4复合材料的形貌、结构和磁性能进行表征。利用矢量网络分析仪(PNA)测试了GOP/Fe3O4复合材料的电磁参数并模拟计算其对电磁波的吸收性能。结果显示:GOP/Fe3O4复合材料的最大电磁波吸收强度值达到-25.4 dB,有效吸收频宽为6.0 GHz,较未改性GO/Fe3O4复合材料均有大幅度提高。 相似文献
12.
在碱性条件下,以共沉淀法合成Fe3O4,再以正硅酸乙酯和二乙烯三胺为原料,制备出Fe3O4复合材料(Fe3O4-SiO2-NH2)。采用FT-IR、VSM和SEM对其结构进行表征,并研究了复合材料对Cd2+的吸附性能。实验结果表明,在T=55℃、t=60 min、Cd2+溶液的初始浓度为100 mg·L-1、Fe3O4-SiO2-NH2的添加量为0.1 g时,该材料对Cd2+的吸附容量为71.4 mg·g-1。其吸附动力学行为更符合准二级动力学,热力学更适合用Langmuir等温吸附模型描述。Fe3O4-SiO2-NH2吸附Cd2+后洗脱再生,经过5次循环使用后,其对Cd2+的去除率仍然大于70%。 相似文献
13.
Ti3C2Tx MXene材料具有二维层状结构及丰富的表面官能团,是一种非常有潜力的重金属离子吸附材料,但其层间距较小,且在水溶液中的稳定性较差。本工作探索了Ti3C2Tx的改性策略,提高其化学稳定性与离子吸附容量,利用一步水热方法制备出不同Fe3O4掺杂量的Fe3O4-Ti3C2Tx(FeMX)复合吸附剂材料。研究结果表明:FeMX吸附剂对Pb(Ⅱ)的理论饱和吸附量可达到210.54 mg/g。研究进一步揭示了FeMX材料对Pb(Ⅱ)离子的吸附机理,Fe3O4纳米颗粒均匀分散、插层在Ti3C2Tx纳米片层间,有效增加了Ti3C2Tx 相似文献
14.
15.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值. 相似文献
16.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。 相似文献
17.
随着电子设备和无线通讯的迅猛发展,电磁干扰问题也随之日益严重,迫切需要发展高性能的电磁屏蔽防护材料来减轻电磁波干扰危害.MXene(Ti3C2Tx)是一种新型二维材料,具有超高的电导率和活跃的化学活性表面,因而展现出极其优异的电磁屏蔽性能.本文重点介绍了Ti3C2Tx的制备方法、结构特性以及电磁屏蔽机理,客观地综述和评价了近年来国内外关于Ti3C2Tx基薄膜和三维多孔材料在电磁屏蔽应用方面的重要研究进展,并分析了目前存在的主要问题.此外,从Ti3C2Tx的制备、结构调控、设计组装等方面展望了Ti3C2Tx基电磁屏蔽材料的发展方向及趋势,包括发展低成本绿色环保且高效的Ti3C2Tx制备工艺、解决Ti3C2Tx不耐氧化的问题、设计新型Ti3C2Tx电磁屏蔽材料结构及探究其他种类的MXenes电磁屏蔽材料,为开发下一代高电磁屏蔽性能材料提供新的思路和指导. 相似文献
18.
Fe/Al2O3复合材料的制备和性能 总被引:1,自引:0,他引:1
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。 相似文献
19.
20.
为提高BiOI在可见光下的光催化性能,采用氟化氢铵蚀刻碳钛化铝得到氧封端的Ti3C2,以五水合硝酸铋为铋源,碘化钾为碘源,利用超声沉淀法合成Ti3C2/BiOI复合材料。通过XRD、SEM、UV-vis、FTIR、EIS、I-t、PL等手段对材料的组成、形貌、结构、光吸收、电化学阻抗、瞬态光电流响应、光谱响应等方面进行表征和测试。以甲基橙(MO)为目标污染物,模拟可见光照射下研究Ti3C2/BiOI复合材料的光催化性能。结果表明:BiOI成功负载到Ti3C2上,在模拟太阳光照射下,Ti3C2/BiOI复合材料表现出较高的光催化降解能力。其中Ti3C2质量分数为6wt%的Ti3C2/BiOI复合粉的光催化效率最高,在光照0.5 h后降解率达到91.6%,较纯BiOI提高4.5倍。氧封端... 相似文献