共查询到17条相似文献,搜索用时 78 毫秒
1.
基于遗传算法的模糊控制器设计 总被引:9,自引:0,他引:9
将改进的遗传算法引入到模糊控制器的设计中,用以自动寻优模糊隶属函数和比例咽子。以二阶系统为例进行了计算机仿真研究结果表明这种方法是有效的。 相似文献
2.
3.
隶属函数决定着模糊集的特征,建立小波基函数与隶属函数之间的联系,从而利用小波分析探讨模糊推理的实质,以一种非对称Haar小波基与三角型、梯型隶属函数的对应关系为基础,将小波分析、遗传算法与模糊系统结合,利用遗传算法实现小波隶属函数的训练学习,进而实现模糊推理规则的优化。 相似文献
4.
在分析图像模糊增强算法对于隶属函数及其模糊区域选择方法不足的基础上,提出一种新的基于粒子群算法的模糊隶属函数优化方法。该方法给出一个新模糊熵的定义,这个新模糊熵定义不仅考虑到图像在模糊域中划分区域时随隶属函数变化而变化的情况,同时又考虑到图像在空域中划分区域时随隶属函数变化而变化的情况。这样就使得图像依照最大熵准则变换到模糊域更能够有效地反映图像的固有信息。另外,根据图像增强算法中使用double型数据类型的特点,采用改进粒子群优化算法寻求隶属函数的最优参数。将新算法应用于图像增强中,取得了优于现有大多数模糊增强算法的效果。 相似文献
5.
论文为模糊系统建模提出了一种新颖的方法——由输入输出数据集合设计基于遗传算法的模糊控制器,该方法采用模糊数据挖掘技术,从大量的输入输出数据集合中自动地提取模糊规则模型,确定模糊分割点及各变量的隶属度函数;并利用实数编码的遗传算法RGA对隶属度函数参数进行全面优化。最后通过实例及仿真验证了该方法的有效性。 相似文献
6.
基于小波隶属函数的模糊推理规则优化 总被引:1,自引:0,他引:1
隶属函数决定着模糊集的特征,建立小波基函数与隶属函数之间的联系,从而利用小波分析探讨模糊推理的实质,以一种非对称Haar小波基与三角型、梯型隶属函数的对应关系为基础,将小波分析、遗传算法与模糊系统结合,利用遗传算法实现小波隶属函数的训练学习,进而实现模糊推理规则的优化。 相似文献
7.
8.
一种基于模糊聚类的隶属函数定义方法 总被引:1,自引:0,他引:1
隶属函数的确定是模糊集合理论及其应用的基本而关键的问题。本文提出了一种基于模糊聚类的、以训练样本数据为依据的、自动地确定模糊集合隶属函数的方法,为开发模糊系统节省了大量的时间和精力。 相似文献
9.
10.
为提高医学图像在组织边界不清晰以及灰度不均匀下的分割性能,提出一种基于多类样本间模糊距离的隶属度函数分割方法。通过磁共振序列测量确定反映磁共振图像脑部组织特性的映射图,经预处理后得到样本模糊标签;设计基于多样本类间模糊距离的隶属度函数确定各样本的隶属度,该隶属度的确定综合考虑了同类样本与不同类样本之间的空间距离,降低了同类样本之间的隶属度依赖;训练模糊支持向量机对三种主要脑组织进行分割。在脑图像公开数据集上的分割实验表明,改进算法可有效提高分割精度。 相似文献
11.
基于可分性测度的模糊隶属函数确定方法 总被引:1,自引:0,他引:1
隶属程度的思想是模糊数学的基本思想,应用模糊数学方法解决实际问题的关键在于建立符合实际的隶属函数,然而,如何正确地确定隶属函数仍是至今尚未完全解决的问题.鉴于此,提出一种基于可分性测度的隶属函数确定方法,利用类间在各个特征上的可分性确定模糊集的划分,进而确定描述该模糊集的隶属函数.通过轨道电路故障诊断实验表明了所提出方法的有效性. 相似文献
12.
介绍一种用于解决带有模糊目标和资源约束的传感器系统的模糊非线性规划问题的非精确方法。提出一种沿加权梯度方向进行变异的特殊遗传算法,在遗传算子中运用模糊控制的思想,寻找最优解所在的邻域,而不是发现精确最优解。从而实现模糊非线性规划传感器系统的优化。 相似文献
13.
基于GA的非线性系统Fuzzy控制规则自调整 总被引:1,自引:1,他引:1
王日宏 《计算机工程与设计》2004,25(6):1022-1023
控制精度和自适应能力一直是模糊控制中较难解决的问题,对于非线性系统更是如此,解决这一技术的核心问题在于控制规则的选取,而遗传算法可以较好地解决常规的数学优化技术不能有效解决的问题。该文给出了对于具有修正因子的控制规则,采用遗传算法对其参数进行自调整的方法,以提高整个控制器的性能。仿真结果表明,这种方法可提高模糊控制器的性能,对非线性系统的控制是有效的。 相似文献
14.
聚类分析在模式识别和图像处理领域中有着极为重要的意义和广泛的应用前景。常用的聚类分析的方法是模糊C均值算法(FCM),但是FCM算法容易陷入局部最优解。提出一种基于FCM和遗传算法对图像进行模糊聚类分析的方法。对输入图像进行纹理特征提取,通过主成分分析法对提取的特征向量进行降维处理,降低图像聚类分析算法的复杂度,提高结果的精确度,结合FCM和遗传算法对图像数据进行模糊聚类分析。实验结果表明该方法可以得到较好的分类效果。 相似文献
15.
探讨一类高效率Mamdani模糊系统隶属函数优化方法.首先通过严密的理论分析将MISO(多输入单输出)_Mamdani模糊系统的输入/输出函数表示成系统隶属函数的局部线性表达式;论证了这个表达式中系统隶属函数项的系数仅由该点所对应的2p个隶属函数值,按大小排成的序列决定.以此为基础,提出了根据输入/输出样本集误差对系统隶属函数进行优化的新方法.该方法近似地将隶属函数优化问题转换成一组线性规划问题进行求解.本文提供的仿真结果也进一步证实了该方法的有效性. 相似文献
16.
17.
针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,PF-BTSVM)。该算法依据最大最小样本距离与质心距离构造出一个近似完全二叉树,提高了整体结构的分类效率;利用模糊隶属度函数以及正负辅助惩罚因子对训练集进行筛选,剔除掉对分类无用的样本与噪声值,实现了训练集的提纯并且削弱了不平衡分类时超平面的偏移。在数据集上的实验结果表明,与其他二叉树多分类算法相比,该算法在提高了分类准确率以及稳定性的的同时还加快了训练与分类的速度,而且这种优势当分类的不平衡度越大时越明显。 相似文献