首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (s + t + 1)-dimensional exchanged crossed cube, denoted as ECQ(s, t), combines the strong points of the exchanged hypercube and the crossed cube. It has been proven that ECQ(s, t) has more attractive properties than other variations of the fundamental hypercube in terms of fewer edges, lower cost factor and smaller diameter. In this paper, we study the embedding of paths of distinct lengths between any two different vertices in ECQ(s, t). We prove the result in ECQ(s, t): if s ≥ 3, t ≥ 3, for any two different vertices, all paths whose lengths are between \( \max \left\{9,\left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +4\right\} \) and 2 s+t+1 ? 1 can be embedded between the two vertices with dilation 1. Note that the diameter of ECQ(s, t) is \( \left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +2 \). The obtained result is optimal in the sense that the dilations of path embeddings are all 1. The result reveals the fact that ECQ(s, t) preserves the path embedding capability to a large extent, while it only has about one half edges of CQ n .  相似文献   

2.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

3.
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, yk=1|x k ? y k |2?k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 ? x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r ? j), j = 0,1,…, 2 n ? 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.  相似文献   

4.
Four new results on the uniqueness of optimal superimposed codes are presented, namely, the uniqueness of (w, r) superimposed codes of size N × T with \(N = \left( {\begin{array}{*{20}c} {w + r + 1} \\ w \\ \end{array} } \right)\) and T = w + r + 1 and the uniqueness of (2, 2) superimposed codes of size 18 × 9, (2, 2) superimposed codes of size 14 × 7, and (3, 3) superimposed codes of size 66 × 11.  相似文献   

5.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    6.
    Summary The k-th threshold function, T k n , is defined as: where x i{0,1} and the summation is arithmetic. We prove that any monotone network computing T 3/n(x 1,...,x n) contains at least 2.5n-5.5 gates.This research was supported by the Science and Engineering Research Council of Great Britain, UK  相似文献   

    7.
    The representation of thek-th root of a complex circular intervalZ={c;r} is considered in this paper. Thek-th root is defined by the circular intervals which include the exact regionZ 1/k={z:z k ∈Z}. Two representations are given: (i) the centered inclusive disks \( \cup \{ c^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0em} k}} ; \mathop {\max }\limits_{z \in Z} |z^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0em} k}} - c^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-0em} k}} |\} \) and (ii) the diametrical inclusive disks with the diameter which is equal to the diameter of the regionZ 1/k.  相似文献   

    8.
    An outer-connected dominating set in a graph G = (V, E) is a set of vertices D ? V satisfying the condition that, for each vertex v ? D, vertex v is adjacent to some vertex in D and the subgraph induced by V?D is connected. The outer-connected dominating set problem is to find an outer-connected dominating set with the minimum number of vertices which is denoted by \(\tilde {\gamma }_{c}(G)\). In this paper, we determine \(\tilde {\gamma }_{c}(S(n,k))\), \(\tilde {\gamma }_{c}(S^{+}(n,k))\), \(\tilde {\gamma }_{c}(S^{++}(n,k))\), and \(\tilde {\gamma }_{c}(S_{n})\), where S(n, k), S +(n, k), S ++(n, k), and S n are Sierpi\(\acute {\mathrm {n}}\)ski-like graphs.  相似文献   

    9.
    Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

    10.
    F. Costabile  A. Varano 《Calcolo》1981,18(4):371-382
    In this paper a detailed study of the convergence and stability of a numerical method for the differential problem $$\left\{ \begin{gathered} y'' = f(x,y) \hfill \\ y(x_0 ) = y_0 \hfill \\ y'(x_0 ) = y_0 ^\prime \hfill \\ \end{gathered} \right.$$ has carried out and its truncation error estimated. Some numerical experiments are described.  相似文献   

    11.
    In this paper, we first define two generalized Wigner–Yanase skew information \(|K_{\rho ,\alpha }|(A)\) and \(|L_{\rho ,\alpha }|(A)\) for any non-Hermitian Hilbert–Schmidt operator A and a density operator \(\rho \) on a Hilbert space H and discuss some properties of them, respectively. We also introduce two related quantities \(|S_{\rho ,\alpha }|(A)\) and \(|T_{\rho ,\alpha }|(A)\). Then, we establish two uncertainty relations in terms of \(|W_{\rho ,\alpha }|(A)\) and \(|\widetilde{W}_{\rho ,\alpha }|(A)\), which read
    $$\begin{aligned}&|W_{\rho ,\alpha }|(A)|W_{\rho ,\alpha }|(B)\ge \frac{1}{4}\left| \mathrm {tr}\left( \left[ \frac{\rho ^{\alpha }+\rho ^{1-\alpha }}{2} \right] ^{2}[A,B]^{0}\right) \right| ^{2},\\&\sqrt{|\widetilde{W}_{\rho ,\alpha }|(A)| \widetilde{W}_{\rho ,\alpha }|(B)}\ge \frac{1}{4} \left| \mathrm {tr}\left( \rho ^{2\alpha }[A,B]^{0}\right) \mathrm {tr} \left( \rho ^{2(1-\alpha )}[A,B]^{0}\right) \right| . \end{aligned}$$
      相似文献   

    12.
    The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg’s uncertainty relation and Schrödinger’s uncertainty relation. In this paper, we prove a Schrödinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads,
    $$\begin{aligned} U_\rho ^{(g,f)}(A)U_\rho ^{(g,f)}(B)\ge \frac{f(0)^2l}{k}\left| \mathrm {Corr}_\rho ^{s(g,f)}(A,B)\right| ^2 \end{aligned}$$
    for some operator monotone functions f and g, all n-dimensional observables AB and a non-singular density matrix \(\rho \). As applications, we derive some new uncertainty relations for Wigner–Yanase skew information and Wigner–Yanase–Dyson skew information.
      相似文献   

    13.
    In this paper, we demonstrate that there exist weak keys in the RSA public-key cryptosystem with the public exponent e = NαN0.5. In 1999, Boneh and Durfee showed that when α ≈ 1 and the private exponent d = Nβ < N0.292, the system is insecure. Moreover, their attack is still effective for 0.5 < α < 1.875. We propose a generalized cryptanalytic method to attack the RSA cryptosystem with α ≤ 0.5. For \(c = \left\lfloor {\frac{{1 - \alpha }}{\alpha }} \right\rfloor \) and eγcd (mod ec), when γ, β satisfy \(\gamma < 1 + \frac{1}{c} - \frac{1}{{2\alpha c}}and\beta < \alpha c + \frac{7}{6} - \alpha \gamma c - \frac{1}{3}\sqrt {6\alpha + 6\alpha c + 1 - 6\alpha \gamma c} \), we can perform cryptanalytic attacks based on the LLL algorithm. The basic idea is an application of Coppersmith’s techniques and we further adapt the technique of unravelled linearization, which leads to an optimized lattice. Our advantage is that we achieve new attacks on RSA with α ≤ 0.5 and consequently, there exist weak keys in RSA for most α.  相似文献   

    14.
    Dr. J. Rokne 《Computing》1979,21(2):159-170
    In computing the range of values of a polynomial over an intervala≤x≤b one may use polynomials of the form $$\left( {\begin{array}{*{20}c} k \\ j \\ \end{array} } \right)\left( {x - a} \right)^j \left( {b - x} \right)^{k - j} $$ called Bernstein polynomials of the degreek. An arbitrary polynomial of degreen may be written as a linear combination of Bernstein polynomials of degreek≥n. The coefficients of this linear combination furnish an upper/lower bound for the range of the polynomial. In this paper a finite differencelike scheme is investigated for this computation. The scheme is then generalized to interval polynomials.  相似文献   

    15.
    In general, it is a difficult problem to solve the inverse of any function. With the inverse implication operation, we present a quantum algorithm for solving the inversion of function via using time–space trade-off in this paper. The details are as follows. Let function \(f(x)=y\) have k solutions, where \(x\in \{0, 1\}^{n}, y\in \{0, 1\}^{m}\) for any integers nm. We show that an iterative algorithm can be used to solve the inverse of function f(x) with successful probability \(1-\left( 1-\frac{k}{2^{n}}\right) ^{L}\) for \(L\in Z^{+}\). The space complexity of proposed quantum iterative algorithm is O(Ln), where L is the number of iterations. The paper concludes that, via using time–space trade-off strategy, we improve the successful probability of algorithm.  相似文献   

    16.
    The ambiguity of a nondeterministic finite automaton (NFA) N for input size n is the maximal number of accepting computations of N for inputs of size n. For every natural number k we construct a family \((L_{r}^{k}\;|\;r\in \mathbb{N})\) of languages which can be recognized by NFA’s with size k?poly(r) and ambiguity O(n k ), but \(L_{r}^{k}\) has only NFA’s with size exponential in r, if ambiguity o(n k ) is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long standing open problem (Ravikumar and Ibarra, SIAM J. Comput. 19:1263–1282, 1989, Leung, SIAM J. Comput. 27:1073–1082, 1998).  相似文献   

    17.
    L. Rebolia 《Calcolo》1973,10(3-4):245-256
    The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

    18.
    We study the k-level uncapacitated facility location problem (k-level UFL) in which clients need to be connected with paths crossing open facilities of k types (levels). In this paper we first propose an approximation algorithm that for any constant k, in polynomial time, delivers solutions of cost at most α k times OPT, where α k is an increasing function of k, with \(\lim _{k\to \infty } \alpha _{k} = 3\). Our algorithm rounds a fractional solution to an extended LP formulation of the problem. The rounding builds upon the technique of iteratively rounding fractional solutions on trees (Garg, Konjevod, and Ravi SODA’98) originally used for the group Steiner tree problem. We improve the approximation ratio for k-level UFL for all k ≥ 3, in particular we obtain the ratio equal 2.02, 2.14, and 2.24 for k = 3,4, and 5.  相似文献   

    19.
    Non-negative matrix factorization (NMF) is widely used in feature extraction and dimension reduction fields. Essentially, it is an optimization problem to determine two non-negative low rank matrices \(W_{m \times k}\) and \(H_{k \times n}\) for a given matrix \(A_{m \times n}\), satisfying \(A_{m \times n} \approx W_{m \times k}H_{k \times n}\). In this paper, a novel approach to improve the image decomposing and reconstruction effects by introducing the Singular Value Decomposing (SVD)-based initialization scheme of factor matrices W and H, and another measure called choosing rule to determine the optimum value of factor rank k, are proposed. The input image is first decomposed using SVD to get its singular values and corresponding eigenvectors. Then, the number of main components as the rank value k is extracted. Then, the singular values and corresponding eigenvectors are used to initialize W and H based on selected rank k. Finally, convergent results are obtained using multiplicative and additive update rules. However, iterative NMF algorithms’ convergence is very slow on most platforms limiting its practicality. To this end, a parallel implementation frame of described improved NMF algorithm using CUDA, a tool for algorithms parallelization on massively parallel processors, i.e., many-core graphics processors, is presented. Experimental results show that our approach can get better decomposing effect than traditional NMF implementations and dramatic accelerate rate comparing to serial schemes as well as existing distributed-system implementations.  相似文献   

    20.
    The Variable-Sized Bin Packing Problem (abbreviated as VSBPP or VBP) is a well-known generalization of the NP-hard Bin Packing Problem (BP) where the items can be packed in bins of M given sizes. The objective is to minimize the total capacity of the bins used. We present an asymptotic approximation scheme (AFPTAS) for VBP and BP with performance guarantee \(A_{\varepsilon }(I) \leq (1+ \varepsilon )OPT(I) + \mathcal {O}\left ({\log ^{2}\left (\frac {1}{\varepsilon }\right )}\right )\) for any problem instance I and any ε>0. The additive term is much smaller than the additive term of already known AFPTAS. The running time of the algorithm is \(\mathcal {O}\left ({ \frac {1}{\varepsilon ^{6}} \log \left ({\frac {1}{\varepsilon }}\right ) + \log \left ({\frac {1}{\varepsilon }}\right ) n}\right )\) for BP and \(\mathcal {O}\left ({ \frac {1}{{\varepsilon }^{6}} \log ^{2}\left ({\frac {1}{\varepsilon }}\right ) + M + \log \left ({\frac {1}{\varepsilon }}\right )n}\right )\) for VBP, which is an improvement to previously known algorithms. Many approximation algorithms have to solve subproblems, for example instances of the Knapsack Problem (KP) or one of its variants. These subproblems - like KP - are in many cases NP-hard. Our AFPTAS for VBP must in fact solve a generalization of KP, the Knapsack Problem with Inversely Proportional Profits (KPIP). In this problem, one of several knapsack sizes has to be chosen. At the same time, the item profits are inversely proportional to the chosen knapsack size so that the largest knapsack in general does not yield the largest profit. We introduce KPIP in this paper and develop an approximation scheme for KPIP by extending Lawler’s algorithm for KP. Thus, we are able to improve the running time of our AFPTAS for VBP.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号