首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of perfluorochemicals (PFCs) including perfluoroalkylsulfonates (PFSAs) and perfluoroalkylcarboxylates (PFCAs) were determined in liver and serum of Baikal seals (Pusa sibirica) collected from Lake Baikal, Russia in 2005. Among the 10 PFC compounds measured, perfluorononanoic acid (PFNA, 3.3-72 ng/g wet wt) concentrations were the highest in liver, followed by perfluorooctanesulfonate (PFOS, 2.6-38 ng/g). The accumulation profile of long-chain (C7-C12) PFCAs in particular, the predominance of PFNA, indicated that 8:2 fluorotelomer alcohol or commercially manufactured PFNA is a major local source of PFCs in Lake Baikal. No gender-related differences in the concentrations of individual PFCs or total PFCs were found. Tissues from pups and juveniles contained relatively higher concentrations of PFCs than tissues from subadults and adults, suggesting that maternal transfer of PFCs is of critical importance. Comparison of concentrations of PFCs in livers and sera collected from the same individuals of Baikal seals revealed that residue levels of PFOS, PFNA, perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were significantly higher in liver than in serum. The concentration ratios of PFNA and PFDA between liver and serum were calculated to be 14 and 15, respectively, whereas the ratio of PFOS was 2.4. This suggests preferential retention of both PFNA and PFDA in liver. Concentrations of PFOS, PFNA, and PFDA in liver were significantly correlated with those in serum, whereas concentrations of PFUnDA were not correlated in between the two tissues, suggesting differences in pharmacokinetics among these PFCs. Temporal comparisons of hepatic PFC concentrations in seals collected between 1992 and 2005 showed that the concentrations of PFOS (p = 0.0006), PFNA (p = 0.061) and PFDA (p = 0.017) were higher in animals collected in recentyears, indicating ongoing sources of PFC contamination in Lake Baikal.  相似文献   

2.
Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs observed in arctic animals. Furthermore, polar bear liver was shown to contain predominately linear isomers (>99%) of perfluorononanoic acid (PFNA), while both branched and linear isomers were observed for perfluorooctanoic acid, strongly suggesting a sole input of PFNA from "telomer"-based products. The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important class of industrial chemicals.  相似文献   

3.
The purpose of this study was to determine the concentration trends of a nine-target-analyte homologous series of perfluorocarboxylates from six American Red Cross adult blood donor centers. A total of 645 serum and 600 plasma samples were obtained in 2000-2001 and 2006, respectively, with samples stratified for each 10-year (20-69) age- and sex-group per each location. Samples were extracted by protein precipitation and quantified by using tandem mass spectrometry. The nine perfluorocarboxylates were perfluorobutanoate (PFBA, C(3)F(7)CO(2)(-)), perfluoropentanoate (PFPeA, C(4)F(9)CO(2)(-)), perfluorohexanoate (PFHxA, C(5)F(11)CO(2)(-)), perfluoroheptanoate (PFHpA, C(6)F(13)CO(2)(-)), perfluorooctanoate (PFOA, C(7)F(15)CO(2)(-)), perfluorononanoate (PFNA, C(8)F(17)CO(2)(-)), perfluorodecanoate (PFDA, C(9)F(19)CO(2)(-)), perfluoroundecanoate (PFUnA,C(10)F(21)CO(2)(-)), and perfluorododecanoate (PFDoA, C(11)F(23)CO(2)(-)). The majority of measurements were less than the lower limit of quantitation for PFPeA, PFHxA, and PFDoA. For the remaining targeted analytes, the geometric mean serum and plasma concentrations (ng/mL) for 2000-2001 and 2006 were, respectively, as follows: PFBA 2.61 vs 0.33, PFHpA 0.13 vs 0.09, PFOA 4.70 vs 3.44, PFNA 0.57 vs 0.97, PFDA 0.16 vs 0.34, and PFUnA 0.10 vs 0.18. Estimates of the 95th percent tolerance limits (ng/mL) were as follows: PFBA 5.3 vs 1.4, PFHpA 0.4 vs 0.4, PFOA 12.3 vs 7.7, PFNA 1.4 vs 2.2, PFDA 0.4 vs 0.8, and PFUnA 0.3 vs 0.5. Important observations were the decline in PFBA and increase in PFNA, PFDA, and PFUnA concentrations between 2000-2001 and 2006. The longer chain length perfluorocarboxylates were also highly correlated with each other.  相似文献   

4.
Wastewater treatment plants have recently been identified as a significant pathway for the introduction of perfluoroalkyl surfactants (PASs) to natural waters. In this study, we measured concentrations and fate of several PASs in six wastewater treatment plants (WWTPs) in New York State. We also monitored and measured matrix effects (ionization suppression and enhancement) by postcolumn infusion and standard additions. Concentrations of perfluorooctanoate (PFOA) in effluents of the six WWTPs ranged from 58 to 1050 ng/L. Perfluorooctanesulfonate (PFOS) was also ubiquitous in effluents of these WWTPs, albeit at much lower concentrations (3-68 ng/L). Two of these WWTPs employed identical treatment processes, with similar hydraulic retentions, but differed only in that Plant B treated domestic and commercial waste, whereas Plant A had an additional industrial influence. We found that this industrial influence resulted in significantly greater mass flows of all of the PASs analyzed. Primary treatment was found to have no effect on the mass flows of PASs. Secondary treatment by activated sludge in Plant A significantly increased (p < 0.05) the mass flows of PFOS, PFOA, perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA). However, in Plant B, only the mass flow of PFOA was significantly increased. The observed increase in mass flow of several PASs may have resulted from biodegradation of precursor compounds such as fluorotelomer alcohols, which is supported by significant correlations in the mass flow of PFOA/PFNA and PFDA/PFUnDA. Furthermore, the masses of PFDA and PFUnDA were significantly correlated only after the secondary treatment. In Plant A, concentrations of odd-number PFCAs were greater than those of even-number PFCAs, and concentration decreased with increasing chain length (from C8 to C12). A different pattern was observed in sludge samples, in which the dominance of PFOA decreased, and PFDA and PFUnDA increased, suggesting preferential partitioning of longer-chain PFCAs to sludge.  相似文献   

5.
Photochemical decomposition of persistent perfluorocarboxylic acids (PFCAs) in water by use of persulfate ion (S2O8(2-)) was examined to develop a technique to neutralize stationary sources of PFCAs. Photolysis of S2O8(2-) produced highly oxidative sulfate radical anions (SO4-), which efficiently decomposed perfluorooctanoic acid (PFOA) and other PFCAs bearing C4-C8 perfluoroalkyl groups. The major products were F- and CO2; also, small amounts of PFCAs with shorter than initial chain lengths were detected in the reaction solution. PFOA at a concentration of 1.35 mM (typical of that in untreated wastewater after an emulsifying process in fluoropolymer manufacture) was completely decomposed by a photochemical system with 50 mM S2O8(2-) and 4 h of irradiation from a 200-W xenon-mercury lamp. The initial PFOA decomposition rate was 11 times higherthan with photolysis alone. All sulfur-containing species in the reaction solution were eventually transformed to sulfate ions by this method. This method was successfully applied to the decomposition of perfluorononanoic acid contained in a floor wax solution.  相似文献   

6.
Perfluorinated acids, including perfluorinated carboxylates (PFCAs), and perfluorinated sulfonates (PFASs), are environmentally persistent and have been detected in a variety of wildlife across the globe. The most commonly detected PFAS, perfluorooctane sulfonate (PFOS), has been classified as a persistent and bioaccumulative substance. Similarities in chemical structure and environmental behavior of PFOS and the PFCAs that have been detected in wildlife have generated concerns about the bioaccumulation potential of PFCAs. Differences between partitioning behavior of perfluorinated acids and persistent lipophilic compounds complicate the understanding of PFCA bioaccumulation and the subsequent classification of the bioaccumulation potential of PFCAs according to existing regulatory criteria. Based on available research on the bioaccumulation of perfluorinated acids, five key points are highlighted in this review: (1) bioconcentration and bioaccumulation of perfluorinated acids are directly related to the length of each compound's fluorinated carbon chain; (2) PFASs are more bioaccumulative than PFCAs of the same fluorinated carbon chain length; (3) PFCAs with seven fluorinated carbons or less (perfluorooctanoate (PFO) and shorter PFCAs) are not considered bioaccumulative according to the range of promulgated bioaccumulation,"B", regulatory criteria of 1000-5000 L/kg; (4) PFCAs with seven fluorinated carbons or less have low biomagnification potential in food webs, and (5) more research is necessary to fully characterize the bioaccumulation potential of PFCAs with longer fluorinated carbon chains (>7 fluorinated carbons), as PFCAs with longer fluorinated carbon chains may exhibit partitioning behavior similar to or greater than PFOS. The bioaccumulation potential of perfluorinated acids with seven fluorinated carbons or less appears to be several orders of magnitude lower than "legacy" persistent lipophilic compounds classified as bioaccumulative. Thus, although many PFCAs are environmentally persistent and can be present at detectable concentrations in wildlife, it is clear that PFCAs with seven fluorinated carbons or less (including PFO) are not bioaccumulative according to regulatory criteria.  相似文献   

7.
In animals, perfluorinated chemicals (PFCs), specifically perfluorooctanoic acid (PFOA) and perfluorooctane sulfate (PFOS), function as peroxisome proliferator-activated receptor (PPAR) alpha agonists. However, the relevance of animal (primarily rodent) data to humans is unresolved. While plasma adiponectin level is very responsive to PPAR gamma agonist drugs, it has not been determined whether adiponectin level is related to serum PFCs concentrations. In the present study, 287 subjects (12-30 years of age) were recruited to determine the relationship between serum level of PFCs and serum level of adiponectin. The results showed males had higher serum PFOS concentrations than females and that those with metabolic syndrome had lower serum PFOA than controls. Besides, it showed regional elevations of the perfluoroundecanoic acid (PFUA) (median concentration: 7.11 ng/mL) in the study subjects. No relationship of PFOA, PFOS, PFUA, and the sum of all four PFCs was found to glucose homeostasis, adiponectin level, lipid profile, and inflammatory markers. The median and the range of perfluorononanoic acid (PFNA) concentration (in ng/mL; for four categories corresponding to the <50, 50-74, 75-89, and ≥90th percentiles) were 0.38 (0.38-1.68), 3.22 (1.73-4.65), 5.85 (4.75-8.29), 10.56 (8.40-25.40), respectively. After controlling for confounding factors, multiple linear regression analysis revealed that the mean natural log-transformed level of adiponectin increased significantly across categories of PFNA (in ng/mL; 8.78, 8.73, 9.06, 9.36; P for trend = 0.010 in the full model). In conclusion, higher serum PFNA concentration is associated with elevated serum adiponectin concentration.  相似文献   

8.
Decomposition of C5-C9 perfluorocarboxylic acids (PFCAs) and perfluoroether carboxylic acids (alternatives to PFCA-based surfactants) in hot water in a sealed reactor was investigated. Although PFCAs showed almost no decomposition in hot water at 80 degrees C in the absence of persulfate (S2O8(2-)), the addition of S2O8(2-) to the reaction system led to efficient decomposition, even at this relatively low temperature. The major products in the aqueous and gas phases were F- ions and CO2, respectively, and short-chain PFCAs were also detected in the aqueous phase. For example, when an aqueous solution containing perfluorooctanoic acid (PFOA, 374 microM) and S2O8(2-) (50.0 mM) was heated at 80 degrees C for 6 h, PFOA concentration in the aqueous phase fell below 1.52 microM (detection limit of HPLC with conductometric detection), and the yields of F- ions [i.e., (moles of F- formed) /(moles of fluorine content in initial PFOA)] and CO2 [i.e, (moles of CO2 formed) /(moles of carbon content in initial PFOA)] were 77.5% and 70.2%, respectively. This method was also effective in decomposing perfluoroether carboxylic acids, such as CF3OC2F4OCF2COOH, CF3OC2F4OC2F4OCF2COOH, and C2F5OC2F4OCF2COOH, which are alternatives to PFCA-based surfactants, producing F- and CO2 with yields of 82.9-88.9% and 87.7-100%, respectively, after reactions at 80 degrees C for 6 h. In addition, the method was successfully used to decompose perfluorononanoic acid in a floor wax solution. When PFOAwastreated at a higher temperature (150 degrees C), other decomposition reactions occurred: the formation of F- and CO2 was dramatically decreased, and 1H-perfluoroalkanes (C(n)F(2n+1)H, n = 4-7) formed in large amounts. This result clearly indicates that treatment with high-temperature water was not suitable for the decomposition of PFCAs to F-: surprisingly, the relatively low temperature of 80 degrees C was preferable.  相似文献   

9.
Perfluorinated acids (PFAs) are today widely distributed in the environment, even in remote arctic areas. Recently, perfluorooctane sulfonate (PFOS) has been identified in marine mammals all over the world, but information on the compound-specific tissue distribution remains scarce. Furthermore, although longer perfluorinated carboxylic acids (PFCAs) are used in industry and were shown to cause severe toxic effects, still little is known on potential sources or their widespread distribution. In this study, we report for the first time on levels of longer chain PFCAs, together with some short chain PFAs, perfluorobutane sulfonate (PFBS) and perfluorobutanoate (PFBA), in liver, kidney, blubber, muscle, and spleen tissues of harbor seals (Phoca vitulina) from the Dutch Wadden Sea. PFOS was the predominant compound in all seal samples measured (ranging from 89 to 2724 ng/g wet weight); however, large variations between tissues were monitored. Although these are preliminary results, it is, to our knowledge, the first time that PFBS could be found at detectable concentrations (2.3 +/- 0.7 ng/g w wt) in environmental samples. PFBS was only detected in spleen tissue. PFCA levels were much lower than PFOS concentrations. The dominant PFCA in all tissues was PFNA (perfluorononanoic acid), and concentrations generally decreased in tissues for all other PFCA homologues with increasing chain length. No clear relationship between PFOS levels in liver and kidney was observed. Furthermore, hepatic PFDA (perfluorodecanoic acid) levels increased with increasing body length, but in kidney tissue, PFDA levels showed an inverse relationship with increasing body length. These data suggest large differences in tissue distribution and accumulation patterns of perfluorinated compounds in marine organisms.  相似文献   

10.
Occurrence and sources of perfluorinated surfactants in rivers in Japan   总被引:4,自引:0,他引:4  
We analyzed perfluorinated surfactants (PFSs) in 20 river samples and 5 wastewater secondary effluent samples in Japan to reveal their occurrence and sources. Nine PFS species were determined: perfluorooctanesulfonate (PFOS), perfluorooctane sulfonamide (FOSA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), perfluorododecanoate (PFDDA), and perfluorotridecanoate (PFTDA). PFSs were detected in all rivers, revealing nationwide contamination of rivers. In particular, 11 out of 20 river samples exceeded New Jersey guidance for PFOA in drinking water (40 ng/L). PFOS, PFHpA, PFOA, and PFNA were major species in Japan. Concentrations of PFOS, PFHpA, and PFNA in rivers were strongly correlated with population density, suggesting that the chemicals were derived from urban activities. PFOA showed a significant but weak correlation. We used crotamiton, a marker of sewage effluent, for further source analysis. Concentrations of PFOS, PFHpA, and PFNAwere strongly correlated with those of crotamiton, and plots of secondary effluents fell near the regression lines of rivers, indicating that the PFOS, PFHpA, and PFNA in rivers were derived from sewage effluent. On the other hand, PFOA was found at remarkably high levels (54-192 ng/L) in seven river samples containing low levels of crotamiton, suggesting that it was derived from nonsewage point sources, as well as sewage effluent. The total fluxes of sewage-derived PFOS, PFHpA, PFOA, and PFNA from Japan were estimated to be 3.6, 2.6, 5.6, and 2.6 t/year, respectively. This is the first report to identify PFOA in several rivers, derived from nonsewage point sources, by using a marker of sewage effluent.  相似文献   

11.
Calculations using a three-dimensional global atmospheric chemistry model (IMPACT) indicate that n-C8F17CH2CH2OH (widely used in industrial and consumer products) degrades in the atmosphere to give perfluorooctanoic acid (PFOA) and other perfluorocarboxylic acids (PFCAs). PFOA is persistent, bioaccumulative, and potentially toxic. Molar yields of PFOA depend on location and season, are in the range of 1-10%, and are of the correct order of magnitude to explain the observed levels in Arctic fauna. Fluorotelomer alcohols such as n-C8F17CH2CH2OH appear to be a significant global source of persistent bioaccumulative perfluorocarboxylic acid pollution. This is the first modeling study of the atmospheric chemistry of a fluorotelomer alcohol.  相似文献   

12.
Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids   总被引:2,自引:0,他引:2  
The widespread detection of environmentally persistent perfluorinated acids (PFCAs) such as perfluorooctanoic acid (PFOA) and its longer chained homologues (C9>C15) in biota has instigated a need to identify potential sources. It has recently been suggested that fluorinated telomer alcohols (FTOHs) are probable precursor compounds that may undergo transformation reactions in the environment leading to the formation of these potentially toxic and bioaccumulative PFCAs. This study examined the aerobic biodegradation of the 8:2 telomer alcohol (8:2 FTOH, CF3(CF2)7CH2CH2OH) using a mixed microbial system. The initial measured half-life of the 8:2 FTOH was approximately 0.2 days mg(-1) of initial biomass protein. The degradation of the telomer alcohol was monitored using a gas chromatograph equipped with an electron capture detector (GC/ECD). Volatile metabolites were identified using gas chromatography/ mass spectrometry (GC/MS), and nonvolatile metabolites were identified and quantified using liquid chromatography/ tandem mass spectrometry (LC/MS/MS). Telomer acids (CF3(CF2)7CH2COOH; CF3(CF2)6CFCHCOOH) and PFOA were identified as metabolites during the degradation, the unsaturated telomer acid being the predominant metabolite measured. The overall mechanism involves the oxidation of the 8:2 FTOH to the telomer acid via the transient telomer aldehyde. The telomer acid via a beta-oxidation mechanism was furthertransformed, leading to the unsaturated acid and ultimately producing the highly stable PFOA. Telomer alcohols were demonstrated to be potential sources of PFCAs as a consequence of biotic degradation. Biological transformation may be a major degradation pathway for fluorinated telomer alcohols in aquatic systems.  相似文献   

13.
Recently it was discovered that humans and animals from various urban and remote global locations contained a novel class of persistent fluorinated contaminants, the most pervasive of which was perfluorooctane sulfonate (PFOS). Lower concentrations of perfluorooctanoate, perfluorohexane sulfonate, and heptadecafluorooctane sulfonamide have also been detected in various samples. Although longer perfluoroalkyl carboxylates (PFCAs) are used in industry and have been detected in fish following a spill of aqueous film forming foam, no studies have been conducted to examine the widespread occurrence of long-chain PFCAs (e.g., CF3(CF2)xCOO-, where x > 6). To provide a preliminary assessment of fluorinated contaminants, including PFCAs, in the Canadian Arctic, polar bears, ringed seals, arctic fox, mink, common loons, northern fulmars, black guillemots, and fish were collected at various locations in the circumpolar region. PFOS was the major contaminant detected in most samples and in polar bear liver was the most prominent organohalogen (mean PFOS = 3.1 microg/g wet weight) compared to individual polychlorinated biphenyl congeners, chlordane, or hexachlorocyclohexane-related chemicals in fat. Using two independent mass spectral techniques, it was confirmed that all samples also contained ng/g concentrations of a homologous series of PFCAs, ranging in length from 9 to 15 carbons. Sum concentrations of PFCAs (sum(PFCAs)) were lower than total PFOS equivalents (sum(PFOS)) in all samples except for mink. In mink, perfluorononanoate (PFNA) concentrations exceeded PFOS concentrations, indicating that PFNA and other PFCAs should be considered in future risk assessments. Mammals feeding at higher trophic levels had greater concentrations of PFOS and PFCAs than mammals feeding at lower trophic positions. In general, odd-length PFCAs exceeded the concentration of even-length PFCAs, and concentrations decreased with increasing chain length in mammals. PFOS and PFCA concentrations were much lower for animals living in the Canadian Arctic than for the same species living in mid-latitude regions of the United States. Future studies should continue to monitor all fluorinated contaminants and examine the absolute and relative toxicities for this novel suite of PFCAs.  相似文献   

14.
A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content.  相似文献   

15.
16.
The toxicological effects of perfluoroalkyl acids on the p-glycoprotein (p-gp) cellular efflux transporter were investigated using the marine mussel Mytilus californianus as a model system. Four of the perfluoroalkyl acids studied exhibit chemosensitizing behavior, significantly inhibiting p-gp transporter activity. The inhibitory potency is maximal for the longer chain acids perfluorononanoate (PFNA) and perfluorodecanoate (PFDA), with average IC50 values of 4.8 and 7.1 microM, respectively. Results indicate that PFNA inhibits p-gp by an indirect mechanism, and this inhibition is reversible and accompanied by a rapid loss of PFNA from the tissue. In addition, PFNA induces expression of the p-gp transporter after a 2-h exposure, a stress response that may result in a metabolic cost to the organism. Given that most organisms, including humans, share efflux transporters as a first line of defense against toxicants, the results of this study may have broader implications for the ecotoxicology of perfluoroalkyl acids.  相似文献   

17.
We investigated temporal trends of blood serum levels of 13 perfluorinated alkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in primiparous women (N = 413) from Uppsala County, Sweden, sampled 3 weeks after delivery 1996-2010. Levels of the short-chain perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) increased 11%/y and 8.3%/y, respectively, and levels of the long-chain perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) increased 4.3%/y and 3.8%/y, respectively. Concomitantly, levels of FOSA (22%/y), perfluorooctane sulfonate (PFOS, 8.4%/y), perfluorodecane sulfonate (PFDS, 10%/y), and perfluorooctanoate (PFOA, 3.1%/y) decreased. Thus, one or several sources of exposure to the latter compounds have been reduced or eliminated, whereas exposure to the former compounds has recently increased. We explored if maternal levels of PFOS, PFOA, and PFNA during the early nursing period are representative for the fetal development period, using serial maternal serum samples, including cord blood (N = 19). PFAA levels in maternal serum sampled during pregnancy and the nursing period as well as in cord blood were strongly correlated. Strongest correlations between cord blood levels and maternal levels were observed for maternal serum sampled shortly before or after the delivery (r = 0.70-0.89 for PFOS and PFOA). A similar pattern was observed for PFNA, although the correlations were less strong due to levels close to the method detection limit in cord blood.  相似文献   

18.
Perfluorinated acids in Arctic snow: new evidence for atmospheric formation   总被引:3,自引:0,他引:3  
Perfluorinated acids (PFAs) are ubiquitously found in water and biota, including remote regions such as the High Arctic. Under environmental conditions, PFAs exist mainly as anions and are not expected to be subject to long-range atmospheric transport in the gas phase. Fluorinated telomer alcohols (FTOHs) are volatile and can be atmospherically oxidized to form perfluorocarboxylic acids. Analogously, fluorosulfamido alcohols can be oxidized to form perfluorooctane sulfonate (PFOS). High Arctic ice caps experience contamination solely from atmospheric sources. By examining concentrations of PFAs in ice cap samples, it is possible to determine atmospheric fluxes to the Arctic. Ice samples were collected from high Arctic ice caps in the spring of 2005 and 2006. Samples were concentrated using solid-phase extraction and analyzed by LC-MS-MS. PFAs were observed in all samples, dating from 1996 to 2005. Concentrations were in the low-mid pg L(-1) range and exhibited seasonality, with maximum concentrations in the spring-summer. The presence of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA) on the ice cap was indicative of atmospheric oxidation as a source. Ratios of PFAs to sodium concentrations were highly variable, signifying PFA concentrations on the ice cap were unrelated to marine chemistry. Fluxes of the PFAs were estimated to the area north of 65 degrees N for the 2005 season, which ranged from 114 to 587 kg year(-1) for perfluorooctanoic acid (PFOA), 73 to 860 kg year(-1) for perfluorononanoic acid (PFNA), 16 to 84 kg year(-1) for PFDA, 26 to 62 kg year(-1) for PFUnA, and 18 to 48 kg year(-1) for PFOS. The PFOA and PFNA fluxes agreed with FTOH modeling estimations. A decrease in PFOS concentrations through time was observed, suggesting a fast response to changes in production. These data suggest that atmospheric oxidation of volatile precursors is a primary source of PFAs to the Arctic.  相似文献   

19.
采用超声法提取纺织品中的全氟化合物。以C18为分析柱,甲醇-5 mmol/L乙酸铵为梯度洗脱淋洗液, 13 min内即可分离全氟己酸(PFHxA),全氟辛酸(PFOA),全氟壬酸(PFNA),全氟癸酸(PFDA),全氟十一酸(PFuDA),全氟十二酸(PFDoA), 全氟丁烷磺酸(PFBS),全氟己烷磺酸(PFHxS),全氟辛烷磺酸(PFOS),全氟癸烷磺酸(PFDS) 10种分析物。以313.1/268.9,412.9/368.9,462.9/418.9,512.7/468.9,562.7/518.9,612.8/568.9,298.8/99,399.2/99,498.8/99,599/99分别对PFHxA,PFOA,PFNA,PFDA,PFuDA,PFDoA,PFBS,PFHxS,PFOS,PFDS进行监控和定量分析。利用同位素内标法进行定量,线性范围和添加回收率分别为0.5~10 µg/m2、84.6%~111.8%,检出限为0.5 µg/m2,低于欧盟指定针对纺织品1 µg/m2 的限定。结果表明,本方法准确、快速,并成功用于20种纺织品实样的检测。  相似文献   

20.
Temporal trends in perfluoroalkyl compounds (PFCs) were investigated in liver samples from two ringed seal (Phoca hispida) populations in the Canadian Arctic, Arviat (Western Hudson Bay) (1992, 1998, 2004, 2005) and Resolute Bay (Lancaster Sound) (1972, 1993, 2000, 2004, 2005). PFCs analyzed included C7-C15 perfluorinated carboxylates (PFCAs) and their suspected precursors, the 8:2 and 10:2 fluorotelomer saturated and unsaturated carboxylates (FTCAs, FTUCAs), C4, C6, C8, C10 sulfonates, and perfluorooctane sulfonamide (PFOSA). Liver samples were homogenized, liquid-liquid extracted with methyl tert-butyl ether, cleaned up using hexafluoropropanol, and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). C9-C15 PFCAs showed statistically significant increasing concentrations during 1992-2005 and during 1993-2005 at Arviat and Resolute Bay, respectively. Doubling times ranged from 19.4 to 15.8 years for perfluorododecanoate (PFDoA) to 10.0-7.7 years for perfluorononanoate (PFNA) at Arviat and Resolute Bay but were shorter when excluding the 2005 samples. Conversely, perfluorooctane sulfonate (PFOS) and PFOSA concentrations showed maximum concentrations during 1998 and 2000 at Arviat and Resolute Bay, with statistically significant decreases from 2000 to 2005. In the case of Arviat, two consecutive decreases were measured from 1998 to 2003 and from 2003 to 2005. PFOS disappearance half-lives for seals at Arviat and Resolute Bay were 3.2 and 4.6 years. These results indicate that the ringed seals and their food web are rapidly responding to the phase out of perfluorooctane sulfonyl fluoride based compounds by 3M in 2001. Further, the relatively short doubling times of the PFCAs and PFOS disappearance half-lives support the hypothesis of atmospheric transport as the main transport mechanism of PFCs to the arctic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号