首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
一种新的利用LNG冷能的回收油田伴生气凝液的工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.  相似文献   

2.
用于生产TAEE的反应精馏和全蒸发的混合过程   总被引:1,自引:0,他引:1       下载免费PDF全文
In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.  相似文献   

3.
拟稳态模型用于间歇萃取精馏的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
Batch extractive distillation (BED) is a special method used in the distillation process by adding a solvent into the batch distillation column to alter the relative volatility of the components and improve the separation. A comprehensive design and simulation method is required due to the complexity of BED. In this study, a quasi-steady-state model for BED is proposed, the derivation and solution of the model are presented. This shortcut model can be used to simulate the composition and temperature of the reboiler, the top and other plates of the column in a batch extractive distillation operation. The calculated values are in good agreement with the experi-mental data. The results show that the quasi-steady-state model is a practical method because of some advantages such as high precision and fast calculation.  相似文献   

4.
An energy-efficient triple-column extractive distillation process is developed for recovering tetrahydrofuran and ethyl acetate from industrial effluent.The process development follows a rigorous hierarchical design procedure that involves entrainer design,thermodynamic analysis,process design and optimization,and heat integration.The computer-aided molecular design method is firstly used to find promising entrainer candidates and the best one is determined via rigorous thermodynamic analysis.Subsequently,the direct and indirect triple-column extractive distillation processes are proposed in the conceptual design step.These two extractive distillation processes are then optimized by employing an improved genetic algorithm.Finally,heat integration is performed to further reduce the process energy consumption.The results indicate that the indirect extractive distillation process with heat integration shows the highest performance in terms of the process economics.  相似文献   

5.
天然气基乙炔工艺 分析与改进   总被引:1,自引:1,他引:0       下载免费PDF全文
This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.  相似文献   

6.
Dimethyl carbonate is an eco-friendly essential chemical that can be sustainably produced from CO2,which is available from carbon capture activities or can even be captured from the air.The rapid increase in dimethyl carbonate demand is driven by the fast growth of polycarbonates,solvent,pharmaceutical,and lithium-ion battery industries.Dimethyl carbonate can be produced from CO2through various chemical pathways,but the most convenient route reported is the indirect alcoholysis of urea.Previous research used techniques such as heat integration and reactive distillation to reduce the energy use and costs,but the use of an excess of methanol in the trans-esterification step led to an energy intensive extractive distillation required to break the dimethyl carbonate-methanol azeotrope.This work shows that the production of dimethyl carbonate by indirect alcoholysis of urea can be improved by using an excess of propylene carbonate(instead of an excess of methanol),a neat feat that we showed it requires only 2.64 kW·h·kg-1 dimethyl carbonate in a reaction-separation-recycle process,and a reactive distillation column that effectively replaces two conventional distillation columns and the reactor for dimethyl carbonate synthesis.Therefore,less equipment is required,the methanol-dimethyl carbonate azeotrope does not need to be recycled,and the overall savings are higher.Moreover,we propose the use of a reactive distillation column in a heat integrated process to obtain high purity dimethyl carbonate(>99.8 wt-%).The energy requirement is reduced by heat integration to just 1.25 kW·h·kg-1 dimethyl carbonate,which is about 52%lower than the reaction-separation-recycle process.To benefit from the energy savings,the dynamics and control of the process are provided for10%changes in the nominal rate of 32 ktpy dimethyl carbonate,and for uncertainties in reaction kinetics.  相似文献   

7.
In low-temperature processes, there are interactions between heat exchanger network (HEN) and refrig-eration system. The modification on HEN of the chilling train for increasing energy recovery does not always coor-dinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a sys-tematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of"pockets", which appears as right nose section in the grand composite curve (EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrig-erant system in an ethylene production process.  相似文献   

8.
This article presents a multiscale simulation approach starting at the molecular level for the adsorption process development. A grand canonical Monte Carlo method is used for the prediction of adsorption isotherms of methanol on an activated carbon at the molecular level. The adsorption isotherms obtained in the linear region (or adsorption constant) are exploited as a model parameter required for the adsorption process simulation. The adsorption process model described by a set of partial differential equations (PDEs) is solved by using the conservation element and solution element method, which produces a fast and an accurate numerical solution to PDEs. The simulation results obtained from the adsorption constant estimated at the molecular level are in good agreement with the experimental results of the pulse response. The systematical multiscale simulation approach addressed in this study may be useful to accelerate the adsorption process development by reducing the number of experiments.  相似文献   

9.
Internal thermally coupled distillation column(ITCDIC) is a frontier in energy saving distillation research. In this paper, the optimal assessment on the energy saving and the operating cost for ITCDIC of nonideal mixture is explored. An evaluating method is proposed, and the pertinent optimization model is then derived. The ethanol-water system is studied as an illustrative example. The optimization results show that the maximum energy saving in ITCDIC process is about 35% and the maximum operating cost saving in ITCDIC process is about 30%,as compared with a conventional distillation column(CDIC) under the minimum reflux ratio operating; the optimal operating pressure of the rectifying section is found to be around 0.25 MPa; the effects of the feed composition,operating pressure and the heat transfer rate on operation are also found and analyzed. It is revealed that ITCDIC process possesses high energy saving potential and promising economical prospect.  相似文献   

10.
周期操作全回流间歇精馏的动态模型(英文)   总被引:1,自引:1,他引:1       下载免费PDF全文
Cyclic total reflux (CTR) batch distillation is a promising mode of the process but lacking of appropriate modeling for the period of filling the reflux drum. A new dynamic modeling method for the simulation of CTR batch distillation is proposed in this work, in which the changes in column holdup and liquid flow rate during the filling of the drum, and the consequent change in valid number of theoretical plates are considered. The effect of drum holdup on operation time is investigated and the optimal drum holdup is obtained from the simulation. The dynamic modeling is compared to the conventional modeling without consideration of change in liquid flow rate. The experimental result shows that the present modeling is more reliable and more accurate, especially for the col-umn with large liquid holdup.  相似文献   

11.
针对以选择性为主要目标的反应精馏塔设计中反应段塔板上反应体积或催化剂的分配问题,提出一种基于热力学(火用)损失分析和流程模拟计算相结合的优化设计策略。为了深层次分析反应精馏塔板上(火用)损失的原因并为制定调优方向提供理论依据,将塔板上的总(火用)损失区分为物理(火用)损失和化学(火用)损失两部分并分别进行计算。在此基础上,将建立的(火用)损失计算方法和流程模拟技术相结合,将反应段塔板上的反应体积的分配和对应的(火用)损失分布相关联,以再沸器热负荷最小为目标,通过建立的方法对反应体积的分配逐步调优,可实现反应精馏塔的优化设计。方法的有效性通过环氧乙烷水合制乙二醇反应精馏体系进行了验证。结果表明,与普遍采用的塔板上等反应体积分配的设计方法相比,通过本文建立的优化分配方法,可使系统的能耗降低18%以上,同时结果优于文献值。  相似文献   

12.
针对酯交换制备过程中甲醇?碳酸二甲酯共沸体系难分离的问题,分别选择变压精馏、碳酸乙烯酯(EC)萃取精馏与乙二醇(EG)萃取精馏3种分离过程进行模拟与能量集成,对比了3种工艺流程的分离能耗,采用有效能(?)分析方法分析了能耗最低的变压分离过程的有效能(?)损失. 结果表明,3种工艺流程的能耗EG萃取精馏>EC萃取精馏>变压精馏,碳酸二甲酯生产过程中内部循环物流能量是输入总能量的1.55倍,变压共沸分离过程的?损失为7.9%。  相似文献   

13.
Distillation is a unit operation in which two main processes are involved: heat transfer for vaporizing and condensing and mass transfer for the separation of the mixture. A distillation unit can be described as an exergy converter: that is a unit which converts thermal exergy into chemical exergy. To obtain a complete graphical representation of mass, enthalpy and exergy balances in a fractional distillation, we propose the use of a diagram: the specific enthalpy (in KJ/ Kg of mixture) is plotted against the Carnot factor θ to show the heat and mass transfer effects simultaneously. The application of the methodology to the distillation of an ammonia-water mixture is presented. Conventional fractional distillation consumes a lot of exergy. We propose a new type of distillation in which the reboiler and the condenser normally located at the bottom and at the top of distillation column, are replaced by two heat exchangers integrated in the column itself. The exchanger integrated in the bottom of the column inputs heat to the column, and the other exchanger located in the upper part of the column removes heat. This arrangement minimizes the creation of entropy in the column and therefore maximizes the exegetic effectiveness. This new process, called:“diabatic” or “quasi-reversible” distillation should bring important improvement to conventional distillation, not only from the point of view of energy use (large reduction in the consumption of heat carriers fluids for heating and cooling), but also in terms of capital investment as the cost of fitting a heat exchanger in the destillation column will probably be less than the cost of reboiler or condenser and reflux head.  相似文献   

14.
This paper aims to investigate the multi-stage effect on crude distillation units (CDUs) in thermodynamics. In this regard, we proposed three-, four-, five-, and six-stage CDU processes with all variables constrained to be almost the same except for the number of stages. We also analyzed the energy and exergy to assess the energy consumed by each process. Because additional distillation units would share the processing load and thus prevent products with low boiling points from overheating, the heat demand of the CDUs decreases with increasing stages and thus reduces the heat supply. Exergy loss is considered as a key parameter to assess these processes. When the exergy losses in heat exchangers are disregarded, the three- and four-stage CDUs have lower exergy losses than the five- and six-stage CDUs. When the overall exergy losses are considered, the optimum number of stages of CDUs depends on the exergy efficiency of heat integration.  相似文献   

15.
Octane and p-xylene are common components in crude gasoline, so their separation process is very important in petroleum industry. The azeotrope and near azeotrope are often separated by extractive distillation in industry, which can realize the recovery and utilization of resources. In this work, the vapor–liquid equilibrium experiment was used to obtain the vapor–liquid equilibrium properties of the difficult separation system, and on this basis, the solvent extraction mechanism was studied. The mechanism of solvent separation plays a guiding role in selecting suitable solvents for industrial separation. The interaction energy, bond length and charge density distribution of p-xylene with solvent are calculated by quantum chemistry method. The quantum chemistry calculation results and experiment results showed that N-formylmorpholine is the best solvent among the alternative solvents in the work. This work provides an effective and complete solvent screening process from phase equilibrium experiments to quantum chemical calculation. An extractive distillation simulation process with N-formylmorpholine as solvent is designed to separate octane and p-xylene. In addition, the feasibility and effectiveness of the intensified vapor recompression assisted extraction distillation are also discussed. In the extractive distillation process, the vapor recompression-assisted extraction distillation process is globally optimal. Compared with basic process, the total annual cost can be reduced by 43.2%. This study provides theoretical guidance for extractive distillation separation technology and solvent selection.  相似文献   

16.
本文应用非平衡热力学的理论建立了旨在反映精馏塔板热量传递和质量传递的有效能衡算方程,并以此方程分析了某乙烯装置的乙烯精馏塔.对于具有多相的非连续体系,可以把每一个相作为一个子体系,各个子体系由相界面隔开,在一些合理的假设条件下,可得出与相际间热量和质量传递相关联的有效能损失方程如下:D=T_0[J_q△(1/T)-sum from k to n J_k·△(μ_k/T)]从而可以深入认识精馏过程中能量转化、传递的实质,并有针对性地改进过程.计算结果表明,所建方程和经典热力学有效能衡算有着很好的一致性,可用于精馏过程的热力学分析.  相似文献   

17.
提出了以有效能损耗最小为目标、同时又考虑热集成的多组分复杂精馏塔序列优化设计新策略。该复杂精馏塔模型:1股进料、2股出料,每块理论板上均可有中间冷凝器或再沸器。复杂精馏过程的设计步骤是:①根据过程有效能最小确定优化塔序列;②对每个塔优化设计出含中间换热器的复杂塔;③考虑多效且允许热集成的复杂精馏流程,以塔压为决策变量,以精馏过程有效能损耗最小为目标,建立并优化设计出一个热集成的复杂精馏流程。一个3组分精馏过程的例子表明所提策略简单有效,可用来指导多组分精馏过程的优化设计。  相似文献   

18.
李乔  田思琪  冯泽民  董立春 《化工进展》2021,40(5):2431-2439
三甲氧基硅烷(trimethoxysilane)是合成功能性有机硅化合物的重要中间体。在以甲醇和硅为原料合成三甲氧基硅烷的工业化生产过程中,过量的甲醇和产物三甲氧基硅烷会形成最高共沸物。本文探究了变压精馏、萃取精馏和隔壁塔萃取精馏三种分离提纯甲醇和三甲氧基硅烷的工艺,以最小年度总费用(TAC)为目标函数,运用混合整数非线性规划(MINLP)对三种流程进行了优化,比较了三种流程的效率和二氧化碳排放量。结果表明,与变压精馏相比,通过隔壁塔萃取精馏分离甲醇与三甲氧基硅烷共沸物具有明显的优势。分离100kmol/h甲醇(摩尔分数50.00%)和三甲氧基硅烷的TAC从198.84万美元/年降低到98.93万美元/年,降幅高达50.25%,效率从8.17%提高到13.82%,二氧化碳排放量从1217.53kg/h减少到684.22kg/h,减少了43.80%。  相似文献   

19.
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steady-state optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.  相似文献   

20.
A new exergy method for process analysis and optimization   总被引:1,自引:0,他引:1  
A two level idealization concept involving the definition of intrinsic and extrinsic exergy destruction is incorporated into exergy analysis, exergoeconomic analysis and exergoeconomic optimization. The intrinsic exergy destruction is caused by the configuration constraints, whereas the extrinsic exergy destruction is caused by the transport rate limitations. For exergy analysis, intrinsic and extrinsic exergy destructions can be quantified for each process operation. For exergoeconomic analysis, the monetary costs associated with these exergy destructions can be determined. For exergoeconomic optimization, the variables associated with process configuration and transport rate limitations can be optimized independently. Methods for analysis as well as optimization are described and demonstrated by two case studies, an ethylene product recovery and separation plant and a benzene-toluene distillation column. Improvements demonstrated from these case studies are significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号