首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of thick film Ni(1−x)CoxMn2O4 in-touch overlay on the X band resonance characteristics of thick film microstrip ring resonator is studied. The thick film overlay decreases the resonance frequency and increases the peak output. From the frequency shift the dielectric constant of the thick film Ni(1−x)CoxMn2O4 has been calculated. For the first time Ag thick film microstrip ring resonator has been used to study thick film Ni(1−x)CoxMn2O4 in the X band.  相似文献   

2.
The objective is to exploit the properties of the GaInNAs/GaAs alloy compressive strain structure to design a laser diode likely to meet the needs of optical communications. Modelling concerns mainly the study of the potentialities of thermal stability and dynamic response offered by these new techniques of electric and optical confinement. Band structure is modelled and typical quantum well properties are illustrated. A thorough study of the structural parameters is undertaken to take into account from the design criteria the temperature sensitivity. Minimising the Auger coefficient in the order of 10−29 cm6/s appears to allow achieving efficient laser diodes production.  相似文献   

3.
This work compares CoxMoyO, CoxFeyO and FexMoyO alloying metal oxide nanoparticles (AMONs) that were individually embedded in HfOxNy high-k dielectric as charge trapping nodes. They were formed by chemical vapor deposition using Co/Mo, Co/Fe and Fe/Mo acetate, respectively, calcined and reduced in Ar/NH3 ambient. The effects of various pre-treatments on CoxMoyO, CoxFeyO and FexMoyO AMONs preparation were investigated. The results indicate that the larger charge trap density, larger memory window and better programming characteristics of CoxMoyO AMONs are attributable to their higher surface density and smaller diameter. The average collected charge in each CoxMoyO AMON is the smallest among three AMONs, revealing that a local leakage path is associated with the least charge loss. The main mechanism that governs the programming characteristics involves the trapping of holes.  相似文献   

4.
Si1−xGex/Si heterostructures play a primary role in the Si-based fast electronics developments of today. In this work, we will present the experimental results of infrared spectroscopic ellipsometry (IRSE) for structural determination of the boron heavily doped SiGe/Si sample grown by ultra-high vacuum chemical vapor deposition (UHVCVD) (the Ge atomic percent, the thickness of SiGe film and boron concentration). Especially, the principle of boron concentration in p-type SiGe film layer determined by IRSE was elucidated in detail. In addition, in order to corroborate the validity of IRSE for determining dopant concentration, secondary ion mass spectroscopy (SIMS) experiment has also been carried out. The close experimental agreement between IRSE and SIMS demonstrate that IRSE as a contactless, and non-destructive technology can be used in-line tools in production used for measuring the Ge content, the thickness of SiGe layer and boron concentration in p-type dopant SiGe/Si heterostructure, which often used the base layer of SiGe hetero-junction bipolar transistor (HBT) devices.  相似文献   

5.
Hafnium oxide (HfO2) films were deposited on Si substrates with a pre-grown oxide layer using hafnium chloride (HfCl4) source by surface sol-gel process, then ultrathin (HfO2)x(SiO2)1−x films were fabricated due to the reaction of SiO2 layer with HfO2 under the appropriate reaction-anneal treatment. The observation of high-resolution transmission electron microscopy indicates that the ultrathin films show amorphous nature. X-ray photoelectron spectroscopy analyses reveal that surface sol-gel derived ultrathin films are Hf-Si-O alloy instead of HfO2 and pre-grown SiO2 layer, and the composition was Hf0.52Si0.48O2 under 500 °C reaction-anneal. The lowest equivalent oxide thickness (EOT) value of 0.9 nm of film annealed at 500 °C has been obtained with small flatband voltage of −0.31 V. The experimental results indicate that a simple and feasible solution route to fabricate (HfO2)x(SiO2)1−x composite films has been developed by means of combination of surface sol-gel and reaction-anneal treatment.  相似文献   

6.
To optimize the performance of copper diffusion barriers, we deposited TaNx thin films through radio frequency (RF) sputtering at various flow ratios of the reactive gases NH3 and Ar. The composition of the film changed from Ta2N to TaN, as evidenced from deposition rates and N-to-Ta ratios, when we increased the NH3-to-Ar flow ratio from 0.075 to 0.3. Furthermore, the structure of the TaNx thin film transformed from body-centered cubic (BCC) to face-centered cubic (FCC) to nanocrystalline upon increasing the NH3-to-Ar flow rate, as revealed by the three steps in the rate of formation of the TaNx films during the sputtering process. When incorporated in Cu/TaNx/n+np+ diodes, the thermal stability of the TaNx thin film—measured in terms of the leakage current remaining below 3 μA—increased from 450 to 550 °C upon increasing the NH3-to-Ar flow ratio from 0.075 to 0.3. It appears that the NH3-to-Ar flow ratio influences the properties of TaNx films predominantly through modification of the crystal structure.  相似文献   

7.
This paper gives the composition dependence of the bandgap energy for highly doped n-type AlxGa1−xN. We report results of the bowing parameter obtained using a random simulation. Three groups of AlxGa1−xN semiconductors were considered and which are distinguishable by their non degenerate or degenerate character in the doping density (1017?ND?1020 cm−3). A striking feature is the large discrepancy of the bandgap bowing (−2.02?b?2.94 eV), as was demonstrated from our calculations. This suggests that high doping may be a possible cause able to induce the large range of bowing parameters reported for AlxGa1−xN alloys.  相似文献   

8.
钟丽云  杨宇 《激光技术》1998,22(1):11-14
在对红外探测器进行理论分析的基础上,设计并研制了液氮温度下的Yba2Cu3-xZnxO7薄膜红外探测器,系统地测试了器件的特征参数.最好的结果为:对于波长为10μm,调制频率为f=500Hz,带宽为Δf=1Hz的红外输入辐射Rv(500,10,1)=3587V/W,NEP(500,10,1)=6.5×10-12W/Hz1/2,D*(500,10,1)=7.2×1012cmHz1/2/W,τ(500,10,1)=1.2ms.  相似文献   

9.
The etching mechanism of (Bi4−xLax)Ti3O12 (BLT) thin films in Ar/Cl2 inductively coupled plasma (ICP) and plasma-induced damages at the etched surfaces were investigated as a function of gas-mixing ratios. The maximum etch rate of BLT thin films was 50.8 nm/min of 80% Ar/20% Cl2. From various experimental data, amorphous phases on the etched surface existed on both chemically and physically etched films, but the amorphous phase was thicker after the 80% Ar/20% Cl2 process. Moreover, crystalline “breaking” appeared during the etching in Cl2-containing plasma. Also the remnant polarization and fatigue resistances decreased more for the 80% Ar/20% Cl2 etch than for pure Ar plasma etch.  相似文献   

10.
Effective work function (?m,eff) values of Hfx Ru1−x alloy gate electrodes on SiO2 metal-oxide-semiconductor (MOS) capacitors were carefully examined to assess whether the ?m,eff was determined by the crystalline structure or the composition of the HfxRu1−x alloy. X-ray diffraction results indicated that the crystalline structures of HfxRu1−x alloy were divided into hexagonal-Ru, cubic-HfRu or hexagonal-Hf with the increase of Hf content. The ?m,eff values could be controlled continuously from 4.6 to 4.0 eV by changing the Hf content. The experimental ?m,eff value showed a good agreement with theoretical results considering the compositional ratio of pure Hf and Ru. These results suggest that the ?m,eff of HfxRu1−x alloy gates on SiO2 MOS capacitors is dominantly determined by the HfxRu1−x composition rather than the crystalline structure.  相似文献   

11.
CNx:B thin films were prepared on titanium coated ceramic substrate by pulsed laser deposition technique (PLD). The microstructure of the film was examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The analyses indicate that the deposited samples are amorphous CNx:B thin films. Field electron emission characteristics of amorphous CNx:B thin films were measured in a vacuum chamber with a base pressure of about 3.2×10−5 Pa. The turn-on field of the film was 3.5 V/μm. The current density was 60 μA/cm2 at an electric field of 9 V/μm. The experimental results indicate that this film could be a promising material applicable to cold cathodes.  相似文献   

12.
SiCl4-based reactive ion etching (RIE) is used to etch MgxZn1−xO (0≤x≤0.3) films grown on r-plane sapphire substrates. The RIE etch rates are investigated as a function of Mg composition, RIE power, and chamber pressure. SiO2 is used as the etching mask to achieve a good etching profile. In comparison with wet chemical etching, the in-plane etching anisotropy of MgxZn1−xO (0≤x≤0.3) films is reduced in RIE. X-ray photoelectron spectroscopy measurements show that there is no Si and Cl contamination detected at the etched surface under the current RIE conditions. The influence of the RIE to the optical properties has been investigated.  相似文献   

13.
Low-temperature Si barrier growth with atomically flat heterointerfaces was investigated in order to improve negative differential conductance (NDC) characteristics of high-Ge-fraction strained Si1−xGex/Si hole resonant tunneling diode with nanometer-order thick strained Si1−xGex and unstrained Si layers. Especially to suppress the roughness generation at heterointerfaces for higher Ge fraction, Si barriers were deposited using Si2H6 reaction at a lower temperature of 400 °C instead of SiH4 reaction at 500 °C after the Si0.42Ge0.58 growth. NDC characteristics show that difference between peak and valley currents is effectively enhanced at 11-295 K by using Si2H6 at 400 °C, compared with that using SiH4 at 500 °C. Non-thermal leakage current at lower temperatures below 100 K tends to increase with decrease of Si barrier thickness. Additionally, thermionic-emission dominant characteristics at higher temperatures above 100 K suggests a possibility that introduction of larger barrier height (i.e. larger band discontinuity) enhances the NDC at room temperature by suppression of thermionic-emission current.  相似文献   

14.
Transparent semiconductor thin films of Zn1−x Mg x O (0 ≤ x ≤ 0.36) were prepared using a sol–gel process; the crystallinity levels, microstructures, and optical properties affected by Mg content were studied. The experimental results showed that addition of Mg species in ZnO films markedly decreased the surface roughness and improved transparency in the visible range. A Zn1−x Mg x O film with an x-value of 0.2 exhibited the best average transmittance, namely 93.7%, and a root-mean-square (RMS) roughness of 1.63 nm. Therefore, thin-film transistors (TFTs) with a Zn0.8Mg0.2O active channel layer were fabricated and found to have n-type enhancement mode. The Zn0.8Mg0.2O TFT had a field-effect mobility of 0.1 cm2/V s, threshold voltage of 6.0 V, and drain current on/off ratio of more than 107.  相似文献   

15.
Ca doping of YBa2Cu3O7−δ (YBCO) is well known to enhance the critical current density in large-angle grain boundaries for example of bicrystals. However, up to now no data are available on microwave properties of epitaxial Ca-doped YBa2Cu3O7−δ thin films on r-plane sapphire with CeO2 buffer layer.Therefore, first results are presented for large-area pulsed laser deposition (PLD) grown CaxY1−xBa2Cu3O7−δ films on 3-in. diameter sapphire wafers. The PLD process is optimised for undoped YBCO thin films and shows high reproducibility for YBCO. The microwave surface resistance Rs at 8.5 GHz of Ca-doped YBCO (x=0.1) thin films shows clear reduction (up to 20%) with respect to that of YBCO for temperatures from about 20–50 K. In addition, microwave surface resistance Rs of Ca-doped YBCO is lower than that of YBCO even for enhanced microwave surface magnetic field up to about 20 mT for temperatures 20 and 40 K.  相似文献   

16.
The surface morphology and microstructure of in situ and ex situ derived YBa2Cu3O7−x (YBCO) thin films have been investigated. In situ films were deposited by single-target off-axis sputtering and three-target co-sputtering. Ex situ films were derived by metalorganic deposition (MOD) of trifluoroacetate precursors. Surface defects resulting from mixed a-axis and c-axis orientation as well as secondary phases have been identified in these films. Despite these defects, films with excellent electrical properties have been formed. However, defects interfere with film patterning and the fabrication of multi-layered structures. Several secondary phase precipitates have been identified, including CuO, Y2O3, Cu-Ba-O, and Y2Cu2O5. Secondary phases resulting from a lack of stoichiometry can be eliminated by direct composition control in the MOD and three-target sputtering techniques, and by composition control through the application of an externally applied magnetic field in single-target off-axis sputtering. Secondary phases caused by contamination were also identified: Cr-Ba-O in off-axis sputtering, resulting from contamination by the oxidized heater block; and BaSO4 in MOD, resulting from gas phase impurities. These results suggest that cation composition control is not sufficient to prevent the formation of secondary phases and that small levels of contamination may prevent phasepure material from being formed.  相似文献   

17.
Ultra-thin films of Dy are grown on Ge(0 0 1) substrates by molecular beam deposition near room temperature and immediately annealed for solid phase epitaxy at higher temperatures, leading to the formation of DyGex films. Thin films of Dy2O3 are grown on the DyGex film on Ge(0 0 1) substrates by molecular beam epitaxy. Streaky reflection high energy electron diffraction (RHEED) patterns reveal that epitaxial DyGex films grow on Ge(0 0 1) substrates with flat surfaces. X-ray diffraction (XRD) spectrum suggests the growth of an orthorhombic phase of DyGex films with (0 0 1) orientations. After the growth of Dy2O3 films, there is a change in RHEED patterns to spotty features, revealing the growth of 3D crystalline islands. XRD spectrum shows the presence of a cubic phase with (1 0 0) and (1 1 1) orientations. Atomic force microscopy image shows that the surface morphology of Dy2O3 films is smooth with a root mean square roughness of 10 Å.  相似文献   

18.
This paper is concerned with the problem of designing H filters for a class of nonlinear networked control systems (NCSs) with transmission delays and packet losses. This problem is investigated under the following assumptions: (i) the delay is constant and known, (ii) the packet-loss process is described by a Bernoulli distributed white sequence, and (iii) the probability of the packet-loss process is unknown but bounded. The first two assumptions are well known in the literature of NCSs, while the last one may often arise in practical networks due to modeling or measurement errors. Under the aforementioned assumptions, delay-dependent conditions for the solvability of the addressed problem are presented in terms of linear matrix inequalities. Numerical examples are also included to illustrate the effectiveness of the proposed method.  相似文献   

19.
The superconducting properties of (M x /YBa2Cu3O7−δy )N multilayer films were studied for varying layer thickness x. Different M phases were examined including green-phase Y2BaCuO5 (211), Y2O3, BaZrO3, CeO2, SmBa2Cu3O7−δ (Sm123), brown-phase La2BaCuO5 (La211), and MgO. Multilayer (M x /YBa2 Cu3O7−δy )N structures were grown by pulsed laser deposition onto SrTiO3 or LaAlO3 single-crystal substrates by alternate ablation of separate YBa2Cu3O7−δ (123) and M targets, at temperatures of 750°C to 790°C. The x layer thickness was varied from 0.1 nm to 4.5 nm, and the y 123 layer thickness was kept constant within a given range of 10 to 25 nm. Different M phase and x layer thicknesses caused large variations of the microstructural and superconducting properties, including superconducting transition (T c), critical current density as a function of applied magnetic field J c(H), self-field J c(77 K), and nanoparticle layer coverage. Strong flux-pinning enhancement up to 1 to 3x was observed to occur for M additions of 211 and BaZrO3 at 65 to 77 K, Y2O3 at 65 K, and CeO2 for H < 0.5 T. BaZrO3 had a noticeably different epitaxy forming smaller size nanoparticles ∼8 nm with 3 to 4x higher areal surface particle densities than other M phases, reaching 5 × 1011 nanoparticles cm−2. To optimize flux pinning and J c (65 to 77 K, H = 2 to 3 T), the M layer thickness had to be reduced below a critical value that correlated with a nanoparticle surface coverage <15% by area. Unusual effects were observed for poor pinning materials including Sm123 and La211, where properties such as self-field J c unexpectedly increased with increasing x layer thickness.  相似文献   

20.
The recently reported inverse silver oxide phase of SiO2 possesses a high dielectric constant as well as lattice constant compatibility to Si. We explore the closely related oxides, GeO2, SnO2 with the same inverse silver oxide structure using ab initio density functional theory within the local density approximation (LDA). According to the phonon dispersion curves, both these structures are computed to be unstable. On the other hand, their alloys Si0.5Ge0.5O2, Si0.5Sn0.5O2, and Ge0.5Sn0.5O2 are stable with higher dielectric constants than that of SiO2 in the same phase. Their first-principles elastic constants, electronic band structures and phonon dispersion curves have been obtained with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号