首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, SnO2 thin films were deposited onto alumina substrates at 350°C by spray pyrolysis technique. The films were studied after annealing in air at temperatures 550°C, 750°C and 950°C for 30 min. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption spectroscopy technique. The grain size was observed to increase with the increase in annealing temperature. Absorbance spectra were taken to examine the optical properties and bandgap energy was observed to decrease with the increase in annealing temperature. These films were tested in various gases at different operating temperatures ranging from 50–450°C. The film showed maximum sensitivity to H 2S gas. The H2S sensing properties of the SnO2 films were investigated with different annealing temperatures and H 2S gas concentrations. It was found that the annealing temperature significantly affects the sensitivity of the SnO2 to the H 2S. The sensitivity was found to be maximum for the film annealed at temperature 950°C at an operating temperature of 100°C. The quick response and fast recovery are the main features of this film. The effect of annealing temperature on the optical, structural, morphological and gas sensing properties of the films were studied and discussed.  相似文献   

2.
In this paper we report doping induced enhanced sensor response of SnO2 based sensor towards ethanol at a working temperature of 200 °C. Undoped and dysprosium-doped (Dy-doped) SnO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and Raman results verified tetragonal rutile structure of the prepared samples. It has been observed that crystallite size reduced with increase in dopant concentration. In addition, the particle size has been calculated from Raman spectroscopy using phonon confinement model and the values match very well with results obtained from TEM and X-ray diffraction investigations. Dy-doped SnO2 sensors exhibited significantly enhanced response towards ethanol as compared to undoped sensor. The optimum operating temperature of doped sensor reduced to 200 °C as compared to 320 °C for that of undoped sensor. Moreover, sensor fabricated from Dy-doped SnO2 nanostructures was highly selective toward ethanol which signifies its potential use for commercial applications. The gas sensing mechanism of SnO2 and possible origin of enhanced sensor response has been discussed.  相似文献   

3.
Nanocrystalline tin oxide (SnO2) thin films were coated using electron beam evaporation technique on glass substrates. To study the gleaming out look of the structure and surface morphological changes, the films were annealed in the temperature 350–550 °C for 1 h. The annealed films were subjected to X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. The XRD patterns of SnO2 thin films as-deposited and annealed at 350 °C illustrate that the films were amorphous, and beyond 350 °C and thereafter they became polycrystalline with tetragonal structure. The crystallite size of the annealed films, obtained through the XRD analysis, increased with the increasing annealing temperature, and it was found to be from 3.6 to 12 nm. The photoluminescence (PL) studies on these films were also carried out. The origin of luminescence was assigned to the defects of the nanocrystalline SnO2 films. The Optical studies (UV-VIS) were performed and the optical band gab energy (Eg) calculations, the dependence of absorption coefficient on the photon energy at short wavelengths, were found to be increasing from 3.65 to 3.91 eV is also investigated.  相似文献   

4.
In the present paper we have synthesized pristine and Sr doped SnO2 in order to prepare a selective ethanol sensor with rapid response–recovery time and good repeatability. Pristine as well as Sr (2, 4 and 6 mol%) doped SnO2 nanostructured powder was synthesized by using a facile co-precipitation method. The samples were characterized by TG–DTA, XRD, HR-TEM, SAED, FEG-SEM, SEM–EDAX, XPS, UV–Vis and FTIR spectroscopy techniques. The gas response performance of sensor towards ethanol, acetone, liquid petroleum gas and ammonia has been carried out. The results demonstrate that Sr doping in SnO2 systematically decreases crystallite size, increases the porosity and hence enhances the gas response properties of pristine SnO2 viz. lower operating temperature, higher ethanol response and better selectivity towards ethanol. The response and recovery time for 4 mol% Sr doped SnO2 thick film sensor at the operating temperature of 300 °C were 2 and 7 s, respectively.  相似文献   

5.
P doped SnO2 (PTO) thin films had been prepared by sol–gel dip coating method. The effect of phosphorus doping content, annealing temperature and coating times on microstructure and phase composition and optoelectrical properties of the PTO thin films were investigated by X-ray diffraction (XRD), Scanning electron microscope (SEM), four-point probe and UV–Vis spectrophotometer. The results showed that the PTO thin films exhibited the tetragonal rutile structure under all the experimental conditions. The square resistance of the PTO thin films decreased firstly and then increased with the increase of phosphorus doping content, annealing temperature and coating times. The surface smoothness and grain compactness were increased when annealing temperature increased. The PTO thin films had an optimal square sheet resistance of 8.9 kΩ/□ and high transparency of 95% in the visible region when P/Sn ratio was 2 mol% and annealing temperature was 450?°C and coating times was 14 layer.  相似文献   

6.
Indium doped tin oxide (SnO2:In) thin films were deposited on glass substrates by sol–gel dip coating technique. X-ray diffraction pattern of SnO2:In thin films annealed at 500 °C showed tetragonal phase with preferred orientation in T (110) plane. The grain size of tin oxide (SnO2) in SnO2:In thin films are found to be 6 nm which makes them suitable for gas sensing applications. AFM studies showed an inhibition of grain growth with increase in indium concentration. The rms roughness value of SnO2:In thin films are found to 1 % of film thickness which makes them suitable for optoelectronic applications. The film surface revealed a kurtosis values below 3 indicating relatively flat surface which make them favorable for the production of high-quality transparent conducting electrodes for organic light-emitting diodes and flexible displays. X-ray photoelectron spectroscopy gives Sn 3d, In 3d and O 1s spectra on SnO2:In thin film which revealed the presence of oxygen vacancies in the SnO2:In thin film. These SnO2:In films acquire n-type conductivity for 0–3 mol% indium doping concentration and p type for 5 and 7 mol% indium doping concentration in SnO2 films. An average transmittance of >80 % (in ultra-violet–Vis region) was observed for all the SnO2:In films he In doped SnO2 thin films demonstrated the tailoring of band gap values. Photoluminescence spectra of the films exhibited an increase in the emission intensity with increase in indium doping concentration which may be due structural defects or luminescent centers, such as nanocrystals and defects in the SnO2.  相似文献   

7.
Ni-doped SnO2 nanoparticles were synthesized by the microwave oven assisted solvothermal method. The structural characterization was done by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy. The outcomes confirmed that Ni-doped SnO2 nanoparticles have a pure rutile-type tetragonal phase of SnO2 structures with a high degree of crystallization and a crystallite size of 10–14 nm. Popcorn like SEM morphology of the nickel doped sample is shown. Optical characterization was done by UV–Vis spectrometer, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Magnetic characterization was done by vibrating sample magnetometer (VSM). The VSM measurements revealed that the Ni doped SnO2 powder samples were diamagnetic at room temperature. This diamagnetic result is in contradiction to earlier published results.  相似文献   

8.
The (In1?xCrx)2O3 powders as well as thin films of x = 0.03, 0.05 and 0.07 were synthesized using a solid state reaction and an electron beam evaporation technique (on glass substrate), respectively. The influence of Cr doping concentration on structural, optical and magnetic properties of the In2O3 samples was systematically studied. The X-ray diffraction results confirmed that all the Cr doped In2O3 samples exist cubic structure of In2O3 without any secondary phases presence. The chemical composition analyses showed that all the Cr doped In2O3 compounds were nearly stoichiometric. The X-ray photoelectron spectroscopy analysis of the Cr doped In2O3 thin films showed an increase of oxygen vacancies with Cr concentration and the existence of Cr as Cr3+ state in the host In2O3 lattice. A small blue shift in the optical band gap was observed in the powder compounds, when the dopant concentration increased from x = 0.03 to x = 0.07. In thin films, the band gap found to increase from 3.63 to 3.74 eV, with an increase of Cr concentration. The magnetic measurements show that the undoped In2O3 bulk powder sample has the diamagnetic property at room temperature. And a trace of paramagnetism was observed in Cr doped In2O3 powders. However (In1?xCrx)2O3 thin films (x = 0.00, 0.03, 0.05 and 0.07) samples shows soft ferromagnetism. The observed ferromagnetism in thin films are attributed to oxygen vacancies created during film prepared in vacuum conditions. The ferromagnetic exchange interactions are established between metal cations via free electrons trapped in oxygen vacancies (F-centers).  相似文献   

9.
Pure and fluorine-modified tin oxide (SnO2) thin films (250–300 nm) were uniformly deposited on corning glass substrate using sol–gel technique to fabricate SnO2-based resistive sensors for ethanol detection. The characteristic properties of the multicoatings have been investigated, including their electrical conductivity and optical transparency in visible IR range. Pure SnO2 films exhibited a visible transmission of 90% compared with F-doped films (80% for low doping and 60% for high doping). F-doped SnO2 films exhibited lower resistivity (0· 12 × 10???4 Ω  cm) compared with the pure (14·16 × 10???4 Ω  cm) one. X-ray diffraction and scanning electron microscopy techniques were used to analyse the structure and surface morphology of the prepared films. Resistance change was studied at different temperatures (523–623 K) with metallic contacts of silver in air and in presence of different ethanol vapour concentrations. Comparative gas-sensing results revealed that the prepared F-doped SnO2 sensor exhibited the lowest response and recovery times of 10 and 13 s, respectively whereas that of pure SnO2 gas sensor, 32 and 65 s, respectively. The maximum sensitivities of both gas sensors were obtained at 623 K.  相似文献   

10.
In this study, preparation of Si and Cd co doped (5 mol% Si and 5–20 mol% Cd) TiO2 dip-coated thin films on glass substrates via sol–gel process have been investigated. The samples were characterized by X-ray diffraction (XRD) and Scanning electron microscopy analysis after heat treatments. XRD results suggested that adding dopants has a great effect on crystallinity and particle size of TiO2. Titania rutile phase formation was inhibited by Si4+ and promoted by Cd2+ doping. But the effect of Cd doped appeared at high concentration. Accordingly, the thin films showed various water contact angles. The water contact angles changed from 69.0° to 9.6° by changing the content of Cd doped.  相似文献   

11.
Nanocrystalline thin films of TiO2 have been synthesized by sol gel spin coating technique Thin films of TiO2 annealed at 700 °C were characterized by X-ray diffraction(XRD), Atomic Force Microscopy, High resolution TEM and Scanning Electron Microscopy (SEM), The XRD shows formation of tetragonal anatase and rutile phases with lattice parameters a = 3.7837 Å and c = 9.5087 Å. The surface morphology of the TiO2 films showed that the nanoparticles are fine with an average grain size of about 60 nm. Optical studies revealed a high absorption coefficient (104 cm?1) with a direct band gap of 3.24 eV. The films are of the n type conduction with room temperature electrical conductivity of 10?6 (Ω cm)?1.  相似文献   

12.
Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. The effect of oxidation temperature on the optical and structural properties of SnO2 films were investigated. Higher transmittance, lower absorption and lesser structural defects were obtained at higher temperatures. Optical bandgap increases with temperature, while the Urbach energy showed reduction. The X-ray diffraction studies showed that at lower temperatures (300, 350 °C), a combined phase of SnO and SnO2 was obtained, while at higher temperatures (400, 450 °C), a nearly polycrystalline SnO2 film with preferred orientation of (101) was produced. Annealing of the samples at 500–650 °C caused the transmittance and optical bandgap increased, while the absorption decreased. Reduction of the Urbach energy after annealing could be attributed to the reduction of the degree of thermal disorder. AFM studies showed that although the thin films were annealed under similar condition, their roughness was not similar because of different oxidation temperatures, which means that initial oxidation temperature played an important role on surface uniformity of SnO2 thin films.  相似文献   

13.
V doped SnO2 and SnO2:F thin films were successfully deposited on glass substrates at 500 °C with spray pyrolysis. It was observed that all films had SnO2 tetragonal rutile structure and the preferential orientation depended on spray solution chemistry (doping element and solvent type) by X-ray diffraction measurements. The lowest sheet resistance and the highest optical band gap, figure of merit, infrared (IR) reflectivity values of V doped SnO2 for ethanol and propane-2-ol solvents and V doped SnO2:F films were found to be 88.62 Ω–3.947 eV–1.02 × 10?4 Ω?1–65.49 %, 65.35 Ω–3.955 eV–8.54 × 10?4 Ω?1–72.58 %, 5.15 Ω–4.076 eV–6.15 × 10?2 Ω?1–97.32 %, respectively, with the electrical and optical measurements. Morphological properties of the films were investigated by atomic force microscope and scanning electron microscope measurements. From these analysis, the films consisted of nanoparticles and the film morphology depended on doping ratio/type and solvent type. It was observed pyramidal, polyhedron, needle-shaped and spherical grains on the films’ surfaces. The films obtained in present study with these properties can be used as front contact for solar cells and it can be also one of appealing materials for other optoelectronic and IR coating applications.  相似文献   

14.
Undoped and Zn-doped SnO2 thin films are deposited onto glass substrates by sol–gel spin coating method. All the films are characterized by X-ray photon spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS shows that Sn presence as valence of Sn4+ in the prepared SnO2 thin films instead of Sn2+. In addition, it also exhibits the amount of Zn in SnO2 thin films, which increases with increasing Zn doping percentage. The Zn (2P3/2) peak is symmetric and centred at around 1,021.73 eV which shifts to the lower binding energy of 1,020.83 eV for 15 at.% Zn doped SnO2 thin film. FTIR study is used to describe the local environment of undoped and Zn-doped SnO2 thin films which also confirms the synthesis of undoped and Zn-doped SnO2 thin films. It is found that the resistance of SnO2 thin films increases as Zn doping concentration increases at room humidity. The resistance of all the samples increases as relative humidity (RH) increases. The sensitivity of SnO2 thin films increases as RH increases while it decreases as Zn doping percentage increases. Response time of SnO2 thin film decreases as Zn doping percentage increases and recovery time slightly increases with doping percentage.  相似文献   

15.
The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ethanol vapours at 300°C. Aluminium oxide grains dispersed around ZnO grains would result into the barrier height among the grains. Upon exposure of ethanol vapours, the barrier height would decrease greatly leading to drastic increase in conductance. It is reported that the surface misfits, calcination temperature and operating temperature can affect the microstructure and gas sensing performance of the sensor. The efforts are, therefore, made to create surface misfits by doping Al2O3 into zinc oxide and to study the sensing performance. The quick response and fast recovery are the main features of this sensor. The effects of microstructure and additive concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of ethanol vapours were studied and discussed.  相似文献   

16.
For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8·5 mbar for 18 h. Argon and oxygen gases were used as sputtering and reactive gases, respectively. ZnO phase could be crystallized using a pure metal target of zinc. The structure of the films determined by means of X-ray diffraction method indicates that the zinc oxide single phase can be fabricated in this substrate temperature range. The sensitivity of the film synthesized at substrate temperature of 130°C is 2·17 in the presence of CO2 gas at a measuring temperature of 100°C.  相似文献   

17.
SnO2 micromaterials were synthesized via hydrothermal method at a temperature of 200 °C for 24 h without employment of catalysts or surfactants. With the dosage of the precursor (SnCl4) increasing, variable microstructures of SnO2, ophiopogon japonicas-like micrograsses, microcones, microflowers and microcorals, were obtained. The as-prepared SnO2 samples were characterized by X-ray diffraction (XRD), scanning electron microscope and energy dispersive spectrometer respectively. XRD results indicated the as-grown SnO2 samples have a tetragonal rutile structure. Among those different morphologies, micrograsses SnO2 exhibited the best field emission performance with a low turn-on field of 1.05 V/µm and a high field enhancement factor of 3880. The results are quite comparable to reported data and strongly imply the micrograsses SnO2 is a potential material for fabricating efficient emitters of display devices and vacuum electronics.  相似文献   

18.
Fluorine-doped tin oxide (SnO2:F, FTO) thin films were prepared by the nebulized spray pyrolysis technique on glass substrates using tin(IV) chloride pentahydrate (SnCl2·5H2O) and ammonium fluoride (NH4F) as source materials. Different volumes of solvent were used to prepare the spray solution, and their effects on structural, optical, morphological, and electrical properties were investigated. X-ray diffraction patterns revealed the polycrystalline tetragonal structure of FTO films. FESEM images demonstrated well-aligned trigonal-shaped nano-grains. Optical band gap values were estimated to be in the range of 3.71–3.66 eV by Tauc’s plot. The effects of solvent volume on the resistivity, conductivity, carrier concentration, mobility, and figure of merit of FTO films were examined. The lowest electrical resistivity and sheet resistance values were 1.90?×?10?4 Ω cm and 4.96 Ω/cm, respectively.  相似文献   

19.
Mo0.5W0.5Se2 thin films were obtained by using relative simple chemical route at room temperature. Various preparative conditions of the thin films are outlined. The films were characterized by X-ray diffraction, scanning electron microscope, optical and electrical properties. The grown films were found to be uniform, well adherent to substrate and brown in color. The X-ray diffraction pattern shows that thin films have a hexagonal phase. Optical properties show a direct band gap nature with band gap energy 1.44 eV and having specific electrical conductivity in the order of 10−5 (Ωcm)−1.  相似文献   

20.
CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was k ∼ 2000 and tan δ ∼ 0.05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号