首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Silver doped tin oxide (SnO2:Ag) nanopowders were synthesized by a simple soft chemical route with 0, 5, 10 and 15 wt% concentrations of Ag. The structural, morphological, optical, photoluminescence and photocatalytic properties of the synthesized samples were studied and the results obtained are reported in this paper. XRD studies confirm the polycrystalline nature of the synthesized samples. The undoped and doped samples exhibit a strong (1 0 1) preferential growth. Decreased crystallite size is observed with Ag doping. Nanosized grains were observed for the doped samples. Peak related to Sn–O–Sn lattice vibration is observed for both the undoped and doped samples in the FTIR spectra. Peaks related to oxygen vacancies were observed at 362 and 499 nm for all the samples in the PL spectra. Enhanced photocatalytic activity was observed for the doped samples and the SnO2:Ag nanopowder with 10 wt% Ag doping concentration exhibited maximum photodegradation efficiency against the degradation of methyl orange dye.  相似文献   

2.
In this paper we report doping induced enhanced sensor response of SnO2 based sensor towards ethanol at a working temperature of 200 °C. Undoped and dysprosium-doped (Dy-doped) SnO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and Raman results verified tetragonal rutile structure of the prepared samples. It has been observed that crystallite size reduced with increase in dopant concentration. In addition, the particle size has been calculated from Raman spectroscopy using phonon confinement model and the values match very well with results obtained from TEM and X-ray diffraction investigations. Dy-doped SnO2 sensors exhibited significantly enhanced response towards ethanol as compared to undoped sensor. The optimum operating temperature of doped sensor reduced to 200 °C as compared to 320 °C for that of undoped sensor. Moreover, sensor fabricated from Dy-doped SnO2 nanostructures was highly selective toward ethanol which signifies its potential use for commercial applications. The gas sensing mechanism of SnO2 and possible origin of enhanced sensor response has been discussed.  相似文献   

3.
Undoped and Zn-doped SnO2 thin films are deposited onto glass substrates by sol–gel spin coating method. All the films are characterized by X-ray photon spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS shows that Sn presence as valence of Sn4+ in the prepared SnO2 thin films instead of Sn2+. In addition, it also exhibits the amount of Zn in SnO2 thin films, which increases with increasing Zn doping percentage. The Zn (2P3/2) peak is symmetric and centred at around 1,021.73 eV which shifts to the lower binding energy of 1,020.83 eV for 15 at.% Zn doped SnO2 thin film. FTIR study is used to describe the local environment of undoped and Zn-doped SnO2 thin films which also confirms the synthesis of undoped and Zn-doped SnO2 thin films. It is found that the resistance of SnO2 thin films increases as Zn doping concentration increases at room humidity. The resistance of all the samples increases as relative humidity (RH) increases. The sensitivity of SnO2 thin films increases as RH increases while it decreases as Zn doping percentage increases. Response time of SnO2 thin film decreases as Zn doping percentage increases and recovery time slightly increases with doping percentage.  相似文献   

4.
V doped SnO2 and SnO2:F thin films were successfully deposited on glass substrates at 500 °C with spray pyrolysis. It was observed that all films had SnO2 tetragonal rutile structure and the preferential orientation depended on spray solution chemistry (doping element and solvent type) by X-ray diffraction measurements. The lowest sheet resistance and the highest optical band gap, figure of merit, infrared (IR) reflectivity values of V doped SnO2 for ethanol and propane-2-ol solvents and V doped SnO2:F films were found to be 88.62 Ω–3.947 eV–1.02 × 10?4 Ω?1–65.49 %, 65.35 Ω–3.955 eV–8.54 × 10?4 Ω?1–72.58 %, 5.15 Ω–4.076 eV–6.15 × 10?2 Ω?1–97.32 %, respectively, with the electrical and optical measurements. Morphological properties of the films were investigated by atomic force microscope and scanning electron microscope measurements. From these analysis, the films consisted of nanoparticles and the film morphology depended on doping ratio/type and solvent type. It was observed pyramidal, polyhedron, needle-shaped and spherical grains on the films’ surfaces. The films obtained in present study with these properties can be used as front contact for solar cells and it can be also one of appealing materials for other optoelectronic and IR coating applications.  相似文献   

5.
The aim of this work was synthesis and investigation of various properties of Co-doped titanium dioxide nanostructures. Synthesis was conducted by the co-precipitation method using cobalt nitrate and titanium isopropoxide as a precursor, followed by thermal treatment at a temperature of 500 °C. The materials were fully characterized using several techniques (X-ray diffraction XRD, SEM, FTIR, TGA/DTA, UV–Vis diffuse reflectance DRS and photoluminescence). However, dopant has no effect on XRD pattern of the host but it can influence on the various characteristics of host such as optical and electrical properties. The scanning electron microscopy was used to detect the morphology of synthesized nanoparticles which sizes changed with the altitude in the doping concentration to 6%. FTIR spectra exhibit broad peaks where anatase phases of TiO2 demonstrate very sharp UV–Vis band gap results showed the reduction in band gap from from 3.21 eV, for undoped TiO2, to 2.74 eV, for Co doped 6% TiO2. The photocatalytic activity of the samples were studied based on the degradation of methyl orange as a model compound, where the results showed that Co doped 6% TiO2 a good photocatalytic activity.  相似文献   

6.
In order to achieve high conductivity and transmittance of transparent conducting oxide, Mg doped SnO2 (MgxSn1?xO2) thin films have been fabricated and characterized to investigate their structural and optical properties. The MgxSn1?xO2 thin films have been deposited on glass substrate using aero-sole assisted chemical vapor deposition. The molar concentration of Mg contents was changed from 0 to 8 %. The confirmation of tetragonal structure and particle size (32–87 nm) of thin films was analyzed by X-ray diffraction. The surface roughness has been found to decrease with the increase of the dopant concentration as investigated by atomic force microscopy. The optical transmission increased from 54 to 78 % and the band gap of pure SnO2 has been found to be 3.75 eV while it rises up to 3.88 eV with increasing Mg doping. The sheet resistance (Rs) of undoped SnO2 is maximum which become lowest at 4 % Mg doped SnO2.  相似文献   

7.
In this study, the electrical and optical properties of Zn doped tin oxide films prepared using sol-gel spin coating process have been investigated. The SnO2 : Zn multi-coating films were deposited at optimum deposition conditions using a hydroalcoholic solution consisting of stannous chloride and zinc chloride. Films with Zn doping levels from 0–10 wt% in solution are developed. The results of electrical measurements indicate that the sheet resistance of the deposited films increases with increasing Zn doping concentration and several superimposed coatings are necessary to reach expected low sheet resistance. Films with three coatings show minimum sheet resistance of 1–479 kΩ/ in the case of undoped SnO2 and 77 kΩ/ for 5 wt% Zn doped SnO2 when coated on glass substrate. In the case of single layer SnO2 film, absorption edge is 3.57 eV and when doped with Zn absorption edge shifts towards lower energies (longer wavelengths). The absorption edge lies in the range of 3.489-3.557 eV depending upon the Zn doping concentration. The direct and indirect transitions and their dependence on dopant concentration and number of coatings are presented.  相似文献   

8.
Nanometric size Zn-doped SnO2 particles with Zn concentration varying from 1 to 6 % were prepared using the co-precipitation method. X-ray diffraction patterns show for all samples a typical rutile-type tetragonal structure of SnO2 without any additional peaks from spurious phases. These results together with transmission electron microscopy analyses have shown that the size of the nanoparticles decreases with Zn doping down to 4 nm. According to UV–visible absorption measurements this decrease of particle size is accompanied by a decrease of the band gap value from 3.34 eV for SnO2 down to 3.28 eV for 6 % Zn doping. The electrical conductivity of the system has been investigated between 473 and 718 K, in the 200 Hz–5 MHz frequency range, by means of impedance spectroscopy. The temperature dependence of the bulk conductivity was found to obey the Arrhenius law with activation energies of 0.74 eV for SnO2 and 0.69 eV for 6 % Zn doping.  相似文献   

9.
This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Mn2+ ions on their structural, optical and magnetic properties. Samples of Sn1?xMnxO2 with x?=?0.01, 0.02, 0.03 and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10–16 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier Transform Infrared Spectroscopy studies. Optical studies were carried by UV–Vis Spectroscopy and Fluorescence Spectroscopy. Electron Paramagnetic resonance was used to calculate the Lande splitting factor ‘g’. The magnetic properties were using Vibrating Sample Magnetometer. SnO2 with lower Mn doping shows ferromagnetism.  相似文献   

10.
We report effect of oxygen vacancies on band gap narrowing, enhancement in electrical conductivity and room temperature ferromagnetism of SnO2 nanoparticles synthesized by simple chemical precipitation approach. As the calcination temperature is elevated from 400 to 800 °C, the average particle size increases from 12.26 to 34.43 nm, with enhanced grain growth and crystalline quality. At low temperatures, these nanoparticles are in a rather oxygen-poor state revealing the presence of many O vacancies and Sn interstitials in SnO2 nanoparticles as in this case Sn+2 is not oxidized completely to Sn+4 and small sized nano particles have more specific surface area, hence defects are more prominent. The oxygen content increases steadily with increasing temperature, with the Sn:O atomic ratio very near to the stoichiometric value of 1:2 at high temperatures suggesting the low density of defects. The optical band gap energies of all SnO2 nanoparticles are in the visible light region, decreasing from 2.89 to 1.35 eV, while room temperature ferromagnetism and electrical conductivity are enhanced with reduced temperatures. The dielectric constant (εr) exhibited dispersion behaviour and the Debye’s relaxation peaks were observed in tanδ. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell–Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+4. The narrowed band gap energies and enhanced ferromagnetism are mainly attributed to the increase of defects density (e.g., oxygen vacancies). The presence of oxygen vacancies is confirmed by EDX, Raman, PL, XPS, and UV–Vis spectra. The band gap of 1.35 eV is the smallest value for SnO2 reported so far. This rather small band gap, enhanced conductivity and room temperature ferromagnetism demonstrate that SnO2 nanoparticles are very promising in the visible light photo catalysis and optoelectronic devices.  相似文献   

11.
Optical properties of Zn doped Y2O3 microsheets prepared by sol–gel combustion method have been investigated and their application in phosphor converted white LED has been examined. The formation of single phase, well crystalline cubic Y2O3 is confirmed from powder XRD results. Effective substitution of Zn in Y2O3 crystal lattice is inferred from shifting of diffraction peaks. SEM images have showed that undoped as well as Zn doped Y2O3 formed as microsheets. Doping of Zn enhanced the growth of the sheets and its length increased from 1.5 to 19 µm. Development of structural disorder in Y2O3 crystal structure after Zn doping and confirmation of the conserved cubic structure of Zn doped Y2O3 without any secondary phase have been revealed from micro-Raman spectra. The optical band gap of Y2O3 has been altered after Zn doping and it is found to be decreased from 5.6 to 5.22 eV as increasing Zn concentration. Both undoped and Zn doped Y2O3 showed a broad visible emission from blue to green region due to various defects and impurities present in it. Broad PL excitation spectrum inferred the possibility to attain the visible emission under the excitation of light with wide range of wavelength from near UV to blue region. Excitation of pure Y2O3 under near UV (375 nm) LED chip lead to the emission of yellow light whereas Zn doped Y2O3 emitted warm white light with color coordinate of (0.42, 0.35), colour rendering index of 77.6 and correlated color temperature (CCT) of 2840 K. Hence, Zn doped Y2O3 discussed in the present work can be a better replacement for various rare earth doped phosphors in the application of phosphor converted WLED (pc-WLED).  相似文献   

12.
The electrical properties of nominally undoped and doped (0.1 wt % Cd, I, and Cu) In2Se3 single crystals have been studied in the range 80–400 K. Only iodine doping has been found to have a significant effect on the carrier concentration in In2Se3, raising it from 4.9 × 1017 to 1.6 × 1018 cm?3 at 300 K. The observed temperature variation of in-plane electron mobility is interpreted in terms of acoustic phonon and neutral impurity scattering. The three dopants have the strongest effect on the out-of-plane conductivity of In2Se3.  相似文献   

13.
The (In1?xCrx)2O3 powders as well as thin films of x = 0.03, 0.05 and 0.07 were synthesized using a solid state reaction and an electron beam evaporation technique (on glass substrate), respectively. The influence of Cr doping concentration on structural, optical and magnetic properties of the In2O3 samples was systematically studied. The X-ray diffraction results confirmed that all the Cr doped In2O3 samples exist cubic structure of In2O3 without any secondary phases presence. The chemical composition analyses showed that all the Cr doped In2O3 compounds were nearly stoichiometric. The X-ray photoelectron spectroscopy analysis of the Cr doped In2O3 thin films showed an increase of oxygen vacancies with Cr concentration and the existence of Cr as Cr3+ state in the host In2O3 lattice. A small blue shift in the optical band gap was observed in the powder compounds, when the dopant concentration increased from x = 0.03 to x = 0.07. In thin films, the band gap found to increase from 3.63 to 3.74 eV, with an increase of Cr concentration. The magnetic measurements show that the undoped In2O3 bulk powder sample has the diamagnetic property at room temperature. And a trace of paramagnetism was observed in Cr doped In2O3 powders. However (In1?xCrx)2O3 thin films (x = 0.00, 0.03, 0.05 and 0.07) samples shows soft ferromagnetism. The observed ferromagnetism in thin films are attributed to oxygen vacancies created during film prepared in vacuum conditions. The ferromagnetic exchange interactions are established between metal cations via free electrons trapped in oxygen vacancies (F-centers).  相似文献   

14.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

15.
The desired size of pure SnO2 and Co (1, 3, 5 mol%) with constant 5 mol% of Al co-doped into SnO2 nanoparticles are synthesized by chemical co-precipitation method. The raw materials used in synthesis are SnCl2.2H2O, AlCl3, Co (C2H3O2).4H2O, aqueous NH4OH and Polyethyleneglycol (PEG) from AR grade. The XRD pattern of pure and co-doped samples confirm the formation of tetragonal rutile phase of SnO2 nanoparticles with average particle size 25 and 20 nm respectively. Micrographs of scanning electron microscope (SEM) for pure and (Co, Al) co-doped into SnO2 show that the prepared nanoparticles are agglomerate and spherical in shape. The EDAX spectra of prepared nanoparticles indicate the presence of Co2+, Al3+, Sn4+ and O2+ and also confirm stoichiometric proportions of raw material in the formation of SnO2. Transmission electron microscope (TEM) reveals that the surface morphology of pure and co-doped samples are spherical, and average size of particles is ~20 nm. Magnetization measurements from M-H curves of VSM show that the ferromagnetism at low concentration of Co and at higher concentration of Co shows weak ferromagnetism due to super exchange coupling among neighboring ions. The bound magnetic polarons model supports the observed ferromagnetic behavior.  相似文献   

16.
Fe-doped SnS2 (SnS2:Fe) nanopowders were synthesized by cost effective chemical method and characterized by thermo gravimetric-differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and vibrating sample magnetometer techniques. The photocatalytic activity was evaluated for the degradation of congo red dye under visible light irradiation. XRD studies indicate that both the undoped and doped SnS2 nanopowders exhibit hexagonal crystal structure with a strong (1 0 1) preferential growth. Nanosized grains are evinced from the TEM images. XPS spectra confirmed the presence of Fe in the doped samples. Photodegradation efficiency increased with increase in Fe doping concentration and the SnS2:Fe nanopowder with 10 wt% Fe doping concentration exhibits a maximum efficiency of 93.94% after 180 min light irradiation. Ferromagnetic ordering of pure SnS2 improved with Fe doping. The outcome of the results indicated that Fe-doped SnS2 nanopowders are well suited as diluted magnetic semiconductor and also can be used as an efficient photocatalyst.  相似文献   

17.
In the present paper we have synthesized pristine and Sr doped SnO2 in order to prepare a selective ethanol sensor with rapid response–recovery time and good repeatability. Pristine as well as Sr (2, 4 and 6 mol%) doped SnO2 nanostructured powder was synthesized by using a facile co-precipitation method. The samples were characterized by TG–DTA, XRD, HR-TEM, SAED, FEG-SEM, SEM–EDAX, XPS, UV–Vis and FTIR spectroscopy techniques. The gas response performance of sensor towards ethanol, acetone, liquid petroleum gas and ammonia has been carried out. The results demonstrate that Sr doping in SnO2 systematically decreases crystallite size, increases the porosity and hence enhances the gas response properties of pristine SnO2 viz. lower operating temperature, higher ethanol response and better selectivity towards ethanol. The response and recovery time for 4 mol% Sr doped SnO2 thick film sensor at the operating temperature of 300 °C were 2 and 7 s, respectively.  相似文献   

18.
Ni-doped SnO2 nanoparticles were synthesized by the microwave oven assisted solvothermal method. The structural characterization was done by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy. The outcomes confirmed that Ni-doped SnO2 nanoparticles have a pure rutile-type tetragonal phase of SnO2 structures with a high degree of crystallization and a crystallite size of 10–14 nm. Popcorn like SEM morphology of the nickel doped sample is shown. Optical characterization was done by UV–Vis spectrometer, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Magnetic characterization was done by vibrating sample magnetometer (VSM). The VSM measurements revealed that the Ni doped SnO2 powder samples were diamagnetic at room temperature. This diamagnetic result is in contradiction to earlier published results.  相似文献   

19.
This article reports the structural, optical and magnetic properties of transition metal (Ni, Co, Mn and Fe) doped SnO2 nanoparticles prepared by modified Pechini sol–gel method. From the X-ray diffraction studies, it is obvious that all the synthesized samples show a phase purity of rutile tetragonal crystal structure of SnO2. The morphology was studied and the particle sizes were estimated from the field emission scanning electron microscopy. From photoluminescence spectra, we observed emission due to the presence of singly ionized oxygen vacancies. Raman spectroscopy shows dominant peaks at 644 and 782 cm?1 which were ascribed to A1g and B2g modes of the rutile structure. Isomer shifting due to dopant addition and large quadrupole splitting due to surface defects were observed in Mössbauer spectra. All the samples show ferromagnetic ordering up to 1 T. The relatively stronger ferromagnetic nature in Fe and Co doped SnO2 is due to the strong p–d exchange interaction. In case of Ni and Mn doped SnO2 samples, the lack of carrier-mediated interaction due to its inherent semiconducting nature reduces the total magnetic moment observed in these samples. The exchange coupling depends on the dopant type and its concentration.  相似文献   

20.
Sn-doped δ-MnO2 (Sn-MnO2) hollow nanoparticles have been synthesized via chemical process at room temperature. Many characterizations have been carried out to fully identify the intrinsic information of the as-prepared samples and investigate their electrochemical properties. The results indicate that the morphologies of the samples can be adjusted by changing the concentration of Sn while the capacitance of Sn-MnO2 nanoparticles increased corresponded with that of the undoped δ-MnO2 nanoparticles. The specific capacitance of Sn(1 at.%)-MnO2 is up to 258.2 F g??1 at a current density of 0.1 A g??1. What’s more, over 90% of the initial specific capacitance still remains after 1000 cycles at a current density of 2.0 A g??1, displaying excellent cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号