首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdS thin films were prepared by spray pyrolysis techniques. Variable angle spectroscopic ellipsometry was used for optical constant calculations. Multiple angle measurements were taken in the most sensitive angle of incidence region. The sensitive regions of angle of incidence were obtained theoretically using 3-dimensional graph ofδψ andδΔ. Real partn and imaginary partk of the complex refractive index of the samples were calculated in the wavelength range 470–650 nm, taking into account surface roughness. Bruggeman’s effective medium approximation is used for analysis of the surface rough layer of the thin films.  相似文献   

2.
《Thin solid films》1986,145(1):105-109
In this paper the formation of CdS films by spray pyrolysis of neutral aqueous solutions of CdCl2 and SC(NH2)2 is described. It was established that the process passes through the stage of the intermediate complex compound [Cd(SCN2H4)2]Cl2 for various molar ratios of the initial components. The complex compounds are characterized by IR spectroscopy, X-ray diffraction and chemical analysis. The thermal decomposition of [Cd(SCN2H4)2]Cl2 to cadmium sulphide was studied.  相似文献   

3.
Films of zinc oxide doped with Al (ZnO:Al) are prepared using the spray pyrolysis technique. The effect of doping Al on the physical properties of ZnO:Al is studied. In this study the polycrystalline ZnO:Al films with the different Al concentration ([Al]/[Zn] in the starting solution was varied from 0 to 0.6 wt.%) were prepared. These films were confirmed to show the high crystallinity by X-ray diffraction technique. The smallest sheet resistance value, around 207 Ω/□, was obtained using a [Al]/[Zn] ratio of 0.125 wt.% in starting solution. The optical transmittance was about 75% in visible range for the optimum film.  相似文献   

4.
In this research, indium oxide nanostructure undoped and doped with Mo were prepared on glass substrates using spray pyrolysis technique. Various parameters such as dopant concentration and deposition temperatures were studied. Structural properties of these films were investigated by X-ray diffraction and scanning electron microscopy. Electrical and optical properties have been studied by Hall effect and UV–Visible spectrophotometer, respectively. The thickness of the films was determined by PUMA software. The variation of refractive index, extension coefficient and bandgap of these films also were investigated.  相似文献   

5.
Nickel oxide (NiO) and lithium-doped nickel oxide films were deposited by the spray pyrolysis technique using NiCl2 and LiCl as starting materials. All the films were greenish-grey in colour and confirmed by X-ray analysis. The best NiO films were obtained when the substrate temperature, Ts=480 °C where a conductivity of 2.1×10-1Ω-1 cm-1 and transparency above 80% in the visible region are achieved. High transparency (above 80%) and highly conducting NiO films were obtained when doped with lithium. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
The preparative parameters have been optimized for NiO film formation in fabricated Spray Pyrolysis System using pneumatic air pressure driven aerosol formation. The structural studies by X-ray diffractometer (XRD) have been carried out to investigate crystallographic features. It was revealed that NiO crystallizes in cubic bunsenite structure. The optical band gap for direct transitions was found to be equal to 3.67 eV. Field Emission Scanning Electron Micrographs (FESEM) have been employed to study morphological aspects of the prepared films. The elemental depth profiles of film contents have been obtained Auger Electron Spectroscopic (AES) studies.  相似文献   

7.
Pure, Barium and Nickel doped cadmium sulphide (CdS) thin films have been coated on glass substrates at 400?°C by spray pyrolysis technique. The prepared CdS and doped CdS thin films were analysed by various measurements such as X-ray diffraction (XRD), SEM, optical and Vibrating Sample Magnetometer (VSM). X-ray diffraction measurements show that the coated pure, Ba and Ni-doped CdS thin films belong to the cubic crystal structure with orientation preferentially along (111) direction. The average crystallite size of pure, Ba and Ni doped CdS thin films were determined as 31, 33 and 45 nm, respectively. The average dislocation density (δ) and stacking fault (SF) of pure, Ba and Ni doped CdS thin films were also determined. The surface morphology and elemental analysis of the thin films were determined by scanning electron microscopy and energy dispersive X-ray spectrum (SEM with EDAX). It is observed that the optical energy bandgap has been decreased from 2.43 to 2.1 eV due to the doping Ba. The luminescence spectrum shows a strong emission peak at 517 nm in the case of pure CdS thin film and a meager red shift has been observed due to the doping. VSM studies were employed to study the magnetic behaviour of Ba and Ni doped CdS thin films.  相似文献   

8.
The zinc stannate thin films were synthesized by simple and inexpensive spray pyrolysis technique on the glass and fluorine doped tin oxide coated conducting glass substrates. The as deposited films were further annealed at 500 °C temperature for 12 h. The structural optical and morphological characterization of as prepared and annealed films was carried out by XRD, UV–Vis spectroscopy, SEM and AFM techniques respectively. The structural analysis shows that films are polycrystalline and crystallized in cubic inverse spinel crystal structure. SEM studies show that grain size increases after annealing and exhibits spherical morphology. AFM study shows that roughness is higher for the post annealed film. Further the samples were tested for testing their applicability for dye sensitized solar cells. The as prepared, annealed and CNT doped samples exhibits photoconversion efficiencies 2.7, 2.8 and 3.1 % respectively.  相似文献   

9.
Zinc oxide films have been prepared via spray pyrolysis using a perfume atomizer. ZnCl2 has been used as precursor. The influence of the precursor solution and dopant concentration has been investigated. Homogeneous films are obtained with a precursor concentration ranging between 0.3 and 0.4 M and a SnCl2 dopant concentration of 1–2%. The films exhibit broad band gaps and small conductivity. The microstructural properties of these films have been compared with that of films deposited using a classical nozzle. Films deposited by perfume atomizer are rougher, with smaller grain size, compared to films deposited with a classical nozzle.  相似文献   

10.
A large number of thin films of cadmium oxide have been prepared on glass substrates by spray pyrolysis method. The prepared films have uniform thickness varying from 200–600 nm and good adherence to the glass substrate. A systematic study has been made on the influence of thickness on resistivity, sheet resistance, carrier concentration and mobility of the films. The resistivity, sheet resistance, carrier concentration and mobility values varied from 1·56–5·72×10−3 Ω-cm, 128–189 Ω/□, 1·6–3·9×1021 cm−3 and 0·3–3 cm2/Vs, respectively for varying film thicknesses. A systematic increase in mobility with grain size clearly indicates the reduction of overall scattering of charge carriers at the grain boundaries. The large concentration of charge carriers and low mobility values have been attributed to the presence of Cd as an impurity in CdO microcrystallites. Using the optical transmission data, the band gap was estimated and found to vary from 2·20–2·42 eV. These films have transmittance around 77% and average reflectance is below 2·6% in the spectral range 350–850 nm. The films aren-type and polycrystalline in nature. SEM micrographs of the CdO films were taken and the films exhibit clear grains and grain boundary formation at a substrate temperature as low as 523 K.  相似文献   

11.
We report the growth of high-quality thin ZnO films with controlled microstructure on Si(111) substrates by ultrasonic spray pyrolysis of Zn-containing solutions.  相似文献   

12.
13.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

14.
Undoped and In-doped ZnO thin films have been prepared on glass substrates from solutions of Zn(CH3CO2)22H2O in a mixture of deionized water and isopropyl alcohol by spray pyrolysis. Their optical, morphological and structural qualities have been studied and the effect of the preparation conditions discussed. It was shown that the main factors determining the parameters of ZnO films are the growth temperature and the indium concentration. The growth temperatures of 625–675 K, indium doping levels of 1–1.5 at.% and precursor concentrations of 0.1–0.2 mol 1−1 are preferable to achieve ZnO films with optical and structural qualities as required for solar cell applications.  相似文献   

15.
Thin films of copper selenide were deposited onto amorphous glass substrates at various substrate temperatures by computerized spray pyrolysis technique. The as deposited copper selenide thin films were used to study a wide range of characteristics including structural, surface morphological, optical and electrical, Hall Effect and thermo-electrical properties. X-ray diffraction study reveals that the films are polycrystalline in nature with hexagonal (mineral klockmannite) crystal structure irrespective of the substrate temperature. The crystalline size is found to be in the range of 23–28 nm. The SEM study reveals that the grains are uniform with uneven spherically shaped and spread over the entire surface of the substrates. EDAX analysis confirmed the nearly stoichiometric deposition of the film at 350 °C. The direct band gap values are found to be in the range 2.29–2.36 eV depending on the substrate temperature. The Hall Effect study reveals that the films exhibit p-type conductivity. The values of carrier concentration and mobility for the film are found to be 5.02 × 1017 cm?3 and 5.19 × 10?3 cm2 V?1 s?1; respectively for film deposited at 350 °C.  相似文献   

16.
The physical and electrical characteristics of CdS thin films deposited by vacuum evaporation, solution growth and spray pyrolysis were analysed. The effects of the common grain growth promoter CdCl2 and annealing were investigated. Grain size, bulk composition and surface composition were measured by energy-dispersive X-ray fluorescence, Auger spectroscopy and scanning electron microscopy. Schottky diode analysis was performed to study the electrical characteristics of the films, and energy band gap was measured by spectral transmission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
FeS2-thin films with good crystallinity were synthesized by a simple method which consists of sulphuration, under vacuum, of amorphous iron oxide thin films pre-deposited by spray pyrolysis of FeCl3·6H2O (0.03 M)-based aqueous solution onto glass substrates heated at 350 °C. At optimum sulphuration temperature (450 °C) and duration (6 h), black green layers having granular structure and high absorption coefficient (5.104 cm−1) were obtained. The study of the electrical properties of the as-prepared films vs. the temperature variations showed three temperature domain dependence of the conductivity behaviour. The first one corresponds to the high temperature range (330 K–550 K) for which an Arrhenius plot type was obtained. The activation energy value was estimated at about 61.47 meV. The second domain corresponding to the intermediate temperature range (80 K–330 K) showed a variable activation energy between the grain boundaries. The barrier height, , was estimated to 27±0.5 meV, and the standard deviation, , was evaluated at about 14±0.5 meV. We found that at lower temperatures (20 K–80 K), the conductivity is governed by two conduction types. The density of localised states, was about 2.45×1020 eV−1 cm−3.  相似文献   

18.

In this study, we report the fabrication of cadmium-doped indium sulfide thin films (In2S3:Cd) using a low-cost nebulizer-aided spray pyrolysis process at 350 °C on glass substrates for photo-sensing applications. The impact of 0, 2, 4, and 8 wt% cadmium concentrations on the structure, morphology, optical properties, and photo-sensing capabilities of In2S3 thin films were examined systematically. From X-ray diffraction (XRD) analysis, the major peak is located in the (103) plane for all Cd-doped In2S3 thin film samples, and the maximum crystallite size for the 4 wt% sample is 59 nm. The field emission scanning electron microscope (FESEM) image revealed a homogenous large-grained surface of Cd-doped In2S3 film that completely covered the substrate. UV–Vis absorption analysis demonstrated good absorption for all thin film samples in the visible and ultraviolet regions of the electromagnetic spectrum, particularly, the 4% Cd-doped concentration showed excellent absorption as is observed from Tauc relation. The highest PL intensity at 680 nm was observed for the sample coated with 4 wt% of Cd. Under UV light, the IV behavior depicts a light current of 1.06?×?10–6 A for a 5 V bias voltage. The In2S3: Cd (4%) sample had the highest responsivity of 2.12?×?10?1A/W and a detectivity of 1.84?×?1011 Jones, with a high EQE of 50%. The study manifests that the developed Cd (4%)-doped In2S3 thin film sample might be better suited for the application of photodetectors.

  相似文献   

19.
ZnS thin films were deposited by spray pyrolysis method on glass substrates. Diffusion of Ag in ZnS thin films was performed in the temperature range 80-400 °C under a nitrogen atmosphere. The diffusion of Ag is determined with XRF, and the obtained concentration profile allows to calculate the diffusion coefficient. The temperature dependence of Ag diffusion coefficient is determined by the equation D = 8 × 10− 9 exp(− 0.10 eV / kT). It was found that the as-grown undoped high resistive n-type ZnS thin films were converted to the p-type upon Ag doping with a slight increase in resistivity only by rapid thermal annealing at 400 °C in N2 atmosphere. In addition, the band gap of the p-type film was decreased as compared with the undoped sample annealed under the same conditions. The results were attributed to the migration of Ag atoms in polycrystalline ZnS films by means of both along intergrain surfaces and intragrain accompanied by interaction with native point defect.  相似文献   

20.
Copper aluminium oxide (CuAlO2) of well ordered crystalline films were deposited on to glass substrates with Cu/Al ratio r = 0.8 at the substrate temperatures of 250, 300, 350, 400 and 450 °C. Films which were characterized had a thickness of the order of few micrometers. Films deposited at the optimized deposition temperature (450 °C) revealed well-crystalline CuAlO2 phase with XRD peak at 2θ = 31.7° corresponds to (006) reflection. The peak positions of the core level XPS spectra, confirm the presence of delafossite CuAlO2 phase. The optical transmission of 80 % has been observed in the visible spectrum. The obtained band gap energy is 4.1 eV. From the observed results it was evidenced that the substrate temperature has strong influence on the structural and optical properties of the spray pyrolysed copper aluminium oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号