首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3MgO–Al2O3–3TiO2 (MAT) ceramics were prepared by a conventional solid-state reaction method. The crystal structure, sintering behavior and microwave dielectric properties of ceramics were investigated using X-ray diffraction, scanning electron microscopy and network analyzer. MAT ceramics contained the coexistence of three phases, including MgAl2O4, MgTiO3 and MgTi2O5. The ceramics sintered at 1350 °C for 4 h presented excellent comprehensive performances with relative permittivity (ε r ) of 15.4, quality factor (Q × f) of 91,000 GHz and temperature coefficient of resonant frequency (τ f ) about ?55.1 ppm/°C.  相似文献   

2.
Ba0.8Sr0.2TiO3 thin films doped by Tm from 0 to 7 mol% were fabricated by sol–gel method on silicon and Pt/Ti/SiO2/Si substrates. X-ray diffraction, scanning electron microscopy, and Raman spectroscopy have been used to study variations of crystal structure, surface morphologies, and phase stability of Tm-doped BST films, respectively. The residual stress in BST films on silicon substrates can be reduced by Tm doping, as demonstrated by the blueshift of phonon peaks in Raman spectra. The dielectric measurements were conducted on metal-insulator-metal capacitors at the frequency from 1 kHz to 1 MHz. The grain size and dielectric constant decreased with increasing Tm concentration. While the variation of dielectric loss, tunability and the figure of merit were nonlinear with increasing Tm concentration. In addition, the photoluminescence property of 0.2 mol% Tm-doped BST was also studied. The effect of Tm doping on the microstructure, dielectric and photoluminescence properties were analyzed.  相似文献   

3.
The (1−x) Ba0.40Sr0.60TiO3 (BST)−xZr0.80Sn0.20TiO4 (ZST) composite ceramics with x = 10, 20, 30, and 40 wt% were fabricated by conventional solid-state reaction method. With increasing of ZST content, the dielectric constant of composite ceramics was decreased and dielectric loss increases. The effect of ZnO addition to 70 wt% BST–30 wt% ZST composition on the microstructure and dielectric properties was investigated. The improvements in dielectric constant, dielectric loss, and microwave dielectric properties of composite ceramics can be achieved by ZnO addition. The sample with 98 wt% (70 wt% BST–30 wt% ZST)–2 wt%ZnO composition exhibits promising dielectric properties, with dielectric constant, loss tangent and tunability at 4 kV/mm, of 125, 0.0016 and 12%, at 10 kHz and room temperature. At ~2 GHz, it possesses a dielectric constant of 101 and a Q factor of 187, which makes it a good candidate for tunable microwave device applications.  相似文献   

4.
In this study, NaNO3, Bi(NO3)3·5H2O, Ba(NO3)2, Ti(OC4H9)4 and citric acid were successfully introduced to fabricate lead-free piezoelectric (Na0.5Bi0.5)0.94Ba0.06TiO3 [NBBT] nanopartical powders by a novel modified sol–gel auto-combustion method. The resultant products were characterized by the X-ray diffraction analysis and transmission electron microscope method. (Na0.5Bi0.5)0.94Ba0.06TiO3 + Mn(NO3)2 [NBBTM] can be sintered by the traditional solid-state reaction, and the effects of NBBT doped different amounts of Mn(NO3)2 at various sintering temperatures upon phase formation, microstructure as well as piezoelectric properties were further studied. The experimental results show that it was helpful to control their chemical ingredients and microstructure to prepare nanocrystalline single phase NBBT powders. Where is the X-ray diffraction result of the corresponding ceramics to prove the existence of the mixing between rhombohedral and tetragonal phases at the MPB compositions. Doping 0.015 mol% Mn(NO3)2 into NBBT at 1,090 °C, piezoelectric constant (d 33) and relative dielectric constant (εr) reach the superior value of 159pC/N and 1,304, respectively, and dielectric loss (tan δ) and electromechanical coupling factor (K t) are 2.5% and 65%, respectively.  相似文献   

5.
The ceramic compositions Ba3−xSrxLiM3Ti5O21[M=Nb and Ta, x = 0 to 3] were prepared through conventional solid state ceramic route. A detailed study has been carried out to correlate the structure of Ba3−xSrxLiM3Ti5O21[M=Nb and Ta, x = 0 to 3] with respect to their dielectric properties. The structure and microstructure of ceramic samples were studied using powder X-ray diffractometer and Scanning Electron Microscopic techniques. The dielectric properties of the sintered ceramic compacts have been studied. The Ba-rich compositions were identified as promising candidates for high frequency applications whereas the Sr-rich compositions were excellent ionic conductors and can be commercially exploited for applications in solid-state batteries.  相似文献   

6.
In this paper, the effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the phase formation, sintering characteristic, the microstructure and microwave dielectric properties of temperature-stable (Mg0.95Co0.05)2TiO4–Li2TiO3 ceramics were investigated. (Mg0.95Co0.05)2TiO4–Li2TiO3 powders were obtained by using the traditional solid-state process. A small amount of LBBS doping can effectively reduce sintering temperature and promote the densification of the ceramics. X-ray diffraction analysis revealed not only the primary phase (Mg·Co)2TiO4 associated with Li2TiO3 minor phase but also a third phase (Mg·Co)TiO3. The dielectric constant and Qf values vary with the doping amount of LBBS and sintering temperatures. With the compensation of the positive temperature coefficient (τ f ) of Li2TiO3 and the negative τ f of (Mg0.95Co0.05)2TiO4, the τ f of the specimens fluctuates around zero. The (Mg0.95Co0.05)2TiO4 ceramic with 2.5 wt% LBBS addition and sintering at 900?°C for 4 h exhibited excellent microwave dielectric properties: ? r ?=?19.076, Qf?=?126100 GHz, and τ f ?=?0.98 ppm/°C.  相似文献   

7.
Nanosize (Na0.5Bi0.5)0.94Ba0.06TiO3 precursor powders were prepared via the citric acid sol–gel method. The ceramics were sintered at 1100–1150 °C. All ceramics exhibit a single-phase perovskite structure. With increasing sintering temperature, the average size of grains in the samples changes slightly from 0.3 to 0.5 µm. All ceramics show obvious dielectric dispersion. Activation energy values were obtained via impedance, electric modulus, and conductivity, respectively, which are in the range of 0.60–1.06 eV. Compared to ceramics synthesized by solid-state reaction method, the as-synthesized samples are fine-grained and have high depolarization temperature and excellent temperature stability of the piezoelectric constant (d 33). The d 33 value of the sample sintered at 1120 °C remains as high as 119 pC N?1 with increasing annealing temperature to 115 °C, whereas the reduced amplitude of d 33 is only approximately 3%.  相似文献   

8.
The pure phase of CaCu3Ti4O12 (CCTO) powder can be successfully synthesized by the sol–gel process. CCTO ceramic samples were synthesized at different sintering temperatures of 1015 and 1050?°C and sintering times of 8 and 10 h. X-ray diffraction results indicated a pure phase for all ceramic samples. Rietveld refinements were adopted for the calculation of lattice constants. Scanning electron microscopy micrographs revealed the effect of sintering conditions on the microstructural evolution of ceramic samples. X-ray absorption near edge spectroscopy was performed to determine the oxidation state of Cu and Ti ions in ceramic samples. The dielectric and non-linear current voltage properties of CCTO ceramic samples were systematically investigated. Interestingly, very low loss tangent (tanδ?<?0.017 at 30?°C and 1 kHz) and giant dielectric constant (ε′?~?10,942) with temperature coefficients less than ±15% in a wide temperature range of ?60 to 125?°C were obtained in the CCTO ceramic sample sintered at 1015?°C for 10 h (CCTO1-10). This suggests a potential use for CCTO1-10 sample in capacitor applications. All CCTO ceramic samples display non-linear characteristic with non-linear coefficient (α) and breakdown field (E b ) values in the range of 5.69–11.02 and 1415–4294, respectively.  相似文献   

9.
TiO2–NiO and TiO2–WO3 nanocomposites were prepared by hydrothermal and surface modification methods. The samples were analyzed using X-ray diffraction, Scanning Electron Microscope images, Transmission Electron Microscope, Energy dispersive analysis, Zeta potential, Electrophoretic mobility and Photocatalysis activity measurement. XRD data sets of TiO2–NiO, TiO2–WO3 powder nanocomposite have been studied for the inclusion of NiO, WO3 on the anatase-rutile mixture phase of TiO2 by Rietveld refinement. The cell parameters, phase fraction, the average grain size, strain and bond lengths between atoms of individual phases have been reported in the present work. Shifted positional co-ordinates of individual atoms in each phase have also been observed.  相似文献   

10.
11.
(Zr0.8Sn0.2)TiO4 (ZST) ceramics were fabricated via conventional solid-state reaction method. Sintering behavior, phase composition, microstructure and microwave dielectric properties of Y2O3–ZnO doped ZST ceramics were investigated. Only a single ZST phase was identified by X-ray diffraction patterns. The variation tendencies of dielectric constants as well as Q × f values were in accordance with the bulk densities. The appropriate Y2O3 and ZnO additions could not only efficiently lower the sintering temperature to 1240 °C, but also noticeably improve the densification and microwave dielectric properties of ZST ceramics. But excessive additives deteriorated the microstructures and comprehensive properties of samples. A dielectric constant ε r of 39.73, a Q × f value of 48,545 GHz (at 5.5 GHz), and a τ f value of ?2.13 ppm/°C were obtained for 1 wt% ZnO doped ZST ceramics with 0.5 wt% Y2O3 addition sintered at 1240 °C.  相似文献   

12.
A simple sol–gel process incorporating slow precursor injection technique was employed to synthesize homogeneous Ba0.5Sr0.5TiO3 nano powders. The Ba0.5Sr0.5TiO3 samples were subjected to calcination temperatures from 600 to 1,100 °C and sintering temperatures from 1,250 to 1,350 °C for the study of phase formation, crystallite size, particle distribution, and dielectric properties. Single phase Ba0.5Sr0.5TiO3 with a cubic perovskite structure was successfully synthesized after calcination at 800 °C. The average size of the nano particles is 42 nm with a narrow size distribution, and a standard deviation of 10%. The highest values recorded within the investigated range for dielectric constant, and dielectric loss measured at 1 kHz are 1,164 and 0.063, respectively, for Ba0.5Sr0.5TiO3 pellets calcined at 800 °C and sintered at 1,350 °C. Leakage current density measured at 5 V for the Ba0.5Sr0.5TiO3 pellet was found to be 49.4 pA/cm2.  相似文献   

13.
The aim of this research work is to represent the comparative study of ZnO/TiO2/ZnO (ZTZ) and TiO2/ZnO/TiO2 (TZT) thin films deposited by sol–gel dip coating on FTO substrates. After deposition, the films were annealed at 500 °C for 1 h. Structural, surface morphology, optical and electrical properties of these films were studied by X-ray diffractrometer (XRD), Raman spectra, atomic force microscope (AFM), photoluminescence spectra (PL) and four point probe technique respectively. XRD and Raman spectra confirmed the anatase, brookite phases of TiO2 and cubic phase of ZnO. AFM confirmed the formation of nano particles with average sizes of 18.4 and 47.2 nm of TZT and ZTZ films respectively. According to PL spectra, both the multilayer films slowdown the electron hole recombination rate and enhances the optoelectronic properties of the materials. Also it showed the peaks in the visible region of spectrum. The four point probe results showed that the average sheet resistivity of the films is 450 and 120 (ohm-m) respectively.  相似文献   

14.
New lead-free ceramics (1–x)NaNbO3–xBi0.5K0.5TiO3 have been fabricated by the conventional ceramic sintering technique, and their ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 diffuses into the NaNbO3 lattices to form a new perovskite-type solid solution with orthorhombic symmetry. The addition of a small amount of Bi0.5K0.5TiO3 (x ≥ 0.025) transforms the ceramics from antiferroelectric to ferroelectric. The ceramic with x = 0.10 possesses the largest remanent polarization P r and thus exhibits the optimum piezoelectric properties, giving d 33 = 71 pC/N, k p = 16.6% and k t = 39.7%. The ceramics with low doping level of Bi0.5K0.5TiO3 are normal ferroelectrics and the ferroelectric-paraelectric phase transition becomes diffusive gradually with the doping level x of Bi0.5K0.5TiO3 increasing. Our results show the (1–x)NaNbO3–xBi0.5K0.5TiO3 ceramics is one of the good candidates for lead-free piezoelectric and ferroelectric materials.  相似文献   

15.
16.
Lead-free ceramics (1???x)Bi0.5Na0.5TiO3xSr0.85Bi0.1TiO3 (BNT–xSBT, x?=?0.4, 0.5, 0.6 and 0.7) were prepared by a solid-state reaction process. Coexistence of ferroelectric relaxation at low temperature and Maxwell–Wagner dielectric relaxation at high temperature was revealed for the first time in this system. Meanwhile, hysteresis-free PE loops combined with a very high piezoelectric strain coefficient (d33) of 1658 pC/N concurrently with large electrostrictive coefficient Q?=?0.287 m4C?2 were achieved. The ferroelectric relaxor behavior and large electrostrictive strain might be linked to easy reorientation and reversal of ergodic PNRs and the combined effect of Bi off-center position and lone pair electrons.  相似文献   

17.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

18.
La2/3Cu3Ti4O12 (LCTO) precursor powders were synthesized by the sol–gel method. Effect of sol conditions and sintering process on microstructure and dielectric properties of LCTO powders or ceramics were investigated systematically. The optimum sol conditions for the synthesis of precursor powders were as follows: the Ti4+ concentration of 1.00 mol/L, the molar ratio of water and titanium of 5.6:1 and the sol pH of 1.0, respectively. After sintered at 1105 °C for 15 h, the LCTO ceramics exhibited more homogeneous microstructure, much higher dielectric constant (ca 09–1.6 × 104) and lower dielectric loss (ca 0.057). The higher dielectric constant of the LCTO ceramics might be due to the internal barrier layer capacitor effect. The LCTO ceramics showed two kinds of conductivity activation energy for grain boundary conductivity from complex impedance analysis. The transition temperature of two activation energy values occured between 170 and 210 °C. The temperature range of 170–210 °C was critical pseudocritical region of the dielectric constant, dielectric loss and activation energy. Furthermore, it was concluded that the grain boundary play an important role for electrical properties.  相似文献   

19.
Two-step pressureless sintering of sol–gel derived 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 (BNT-BT) lead-free piezoelectric ceramics were investigated in comparison with conventional sintering. The effect of sintering regimes on the densification, grain growth behavior and electrical properties was discussed in detail. The results indicated that BNT-BT ceramics with a density of 95%, a relatively fine grain size of 850 nm and comparable piezoelectric properties (d33 ~170 pC/N, kp ~0.26, Qm ~102) had been achieved by pre-sintering at 1,150 °C to reach a critical density of 78%, and then cooling to a lower temperature of 1,050 °C for 20 h. The critical density value proves important at which the grain boundary diffusion could be maintained but the grain boundary migration suppressed at the same time. Moreover, the volatilization loss of Bi and Na elements could be inhibited by two-step sintering. Both the reduction of the grain size and the inhibition of the stoichiometry deviation together account for the variation of various electrical properties.  相似文献   

20.
CaO–SrO–Li2O–Ln2O3–TiO2 ceramics were prepared by solid state reaction method, where Ln2O3 consists of equal proportions of Nd2O3 and Sm2O3. Dielectric properties and crystal structure were investigated with respect to the content of TiO2. Single phase with an orthorhombic perovskites structure was formed within the composition range of investigation. The frequency dependence of dielectric properties of the present ceramics was extensively investigated. Dielectric constant was less sensitive to frequency. However, dielectric loss and temperature coefficients were both very sensitive to frequency and gradually decreased with increasing frequency, such as the variation was more than ten times between 1 MHz and several GHz. The relationship between the temperature coefficient and dielectric loss was also discussed at different frequencies. And the mechanism of the frequency dependence was discussed in term of the role of Li ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号