首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nano-MoS2/TiO2 composite was synthesized in H2 atmosphere by calcining a MoS3/TiO2 precursor, which was obtained via a quick deposition of MoS3 on anatase nano-TiO2 under a strong acidic condition. The obtained nano-MoS2/TiO2 composite was characterized by X-ray diffraction spectroscopy, Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The results show that the composite had a high BET surface area because of its small size and irregularly layered structure. MoS2 in the composite was composed of typical layered structures with thicknesses of 2–8 nm and lengths of 10–40 nm. The composite contained a wide and intensive absorption at 400–700 nm, which is in the visible light region, and presented a positive catalytic effect on removing methyl orange from the aqueous solution. The catalytic activity of the composite was influenced by the initial concentration of methyl orange, the amount of the catalyst, the pH value, and the degradation temperature. In addition, the composite catalyst could be regenerated and repeatedly used via filtration three times. The deactivating catalyst could be reactivated after catalytic reaction by heating at 450 °C for 30 min in H2.  相似文献   

2.
In this study, the effects of sodium oleate on synthesis of Bi2WO6/Bi2O3 loaded reduced graphene oxide photocatalyst was studied. The as-prepared composites were characterized by X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance and photoluminescence spectroscopy. The results suggested that addition of sodium oleate not only promoted synthesis of Bi2O3, but also enhanced the reduction of GO to graphene. When the amount of sodium oleate was 4 mol (Bi:SO?=?1:1), Bi2WO6/Bi2O3@RGO to the best visible-light photocatalytic activity can be synthesized by a facile one-step solvothermal process without further reduction reaction. Hence, it indicated that sodium oleate could affect the synthesis of the as-prepared composites and the photocatalytic activity for degradation of RhB. This study did provide not only a facile method to synthesize Bi2WO6/Bi2O3@RGO, but also a method to reduce graphene oxide to graphene.  相似文献   

3.
Mesocrystalline TiO2/sepiolite (TiS) composites with the function of adsorption and degradation of liquid organic pollutants were successfully fabricated via a facile and low-cost solvothermal reaction. The prepared TiS composites were characterized by FESEM, HRTEM, XRD, XPS, N2 adsorption-desorption, UV–vis DRS, and EPR. Results revealed the homogeneous dispersion of highly reactive TiO2 mesocrystals on the sepiolite nanofibers. Thereinto each single–crystal–like TiO2 mesocrystal comprised many [001]-oriented anatase nanoparticles about 10–20 nm in diameter. The photocatalytic activity was further evaluated by the degradation of anionic dye (methyl orange) and cationic dye (methylene blue) under the UV-vis light (350≤λ≤780 nm) irradiation. By selecting appropriate experimental conditions, we can easily manipulate the photocatalytic performance of TiS composites. The optimal TiS catalyst (the sepiolite content of 28.5 wt.%, and the reaction time of 24 h) could efficiently degrade methyl orange to 90.7% after 70 min, or methylene blue to 97.8% after 50 min, under UV-vis light irradiation. These results can be attributed to their synergistic effect of high crystallinity, large specific surface area, abundant hydroxyl radicals, and effective photogenerated charge separation.  相似文献   

4.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

5.
The physicochemical properties of BaO-Bi2O3-B2O3 glasses have been studied. The effect of KBF4 additions on the properties of the glasses has been examined. The transmission of the glasses has been correlated with their local structure and composition.  相似文献   

6.
The electrical properties of layered perovskite-like compounds with the general formula Bi m + 1Fe m − 3Ti3O3m + 3 have been studied in relation to their physicochemical properties and structure.  相似文献   

7.
Bismuth(III) and germanium(IV) oxides are used as precursors for the crystal growth of bismuth orthogermanate. The chlorine content of the starting oxides is critical to the engineering performance of this material. We propose a simple, high-speed technique for determining the chlorine content of bismuth(III) and germanium(IV) oxides, down to 5 × 10?4 wt %, using capillary electrophoresis.  相似文献   

8.
Lead-free ferroelectric ceramics of (1−x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3]-x KNbO3(x = 0, 0.02, 0.04, and 0.06) were prepared by the conventional ceramic fabrication technique. The crystal structure, dielectric properties and P-E hysteresis loops were investigated. XRD data showed that all compositions could form pure perovskite structure. Temperature dependence of dielectric constant ε r and dissipation factor tanδ measurement between room temperature and 500C revealed that the compounds experience phase transitions that from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric in the range of x = 0–0.04. The frequency dependent dielectric constant showed these compounds were relaxor ferroelectric. At low frequency and high temperature, dielectric constant and dissipation factor increased sharply attributed to the superparaelectric clusters after the KNbO3 doped.  相似文献   

9.
The WO3/TiO2 nanocomposites were successfully prepared via a facile oxalic acid assisted hydrothermal process. The oxalic acid played a vital role on the preparation of WO3/TiO2 nanocomposites. Notably, it has been observed that the nanocomposites exhibited the wider absorption edge, and the higher photocatalytic activity, compared with pure TiO2. In addition, the photocatalytic mechanism was proposed, and it elaborated that WO3/TiO2 nanocomposite promoted the separation of the photoproduction carriers, and improved photocatalytic activity. The WO3/TiO2 nanocomposite may have a potential application as a UV–visible photocatalyst.  相似文献   

10.
Nanoparticles of nickel ferrites (NiFe2O4) were synthesized at different temperature of synthesis (25, 50 and 80 °C) through the chemical co-precipitation method. The synthesized powders were characterized using X-ray diffraction for crystallite size and lattice parameter calculation. It reveals the presence of cubic spinel structure of ferrites with crystallite size between 29 and 41 nm. Transmission electron microscopy and scanning electron microscopy showed uniform distribution of ferrite particles with some agglomeration. The Fourier-transform infrared spectroscopy showed absorption bonds, which were assigned to the vibration of tetrahedral and octahedral complexes. Raman spectroscopy is used to verify that we have synthesized ferrite spinels and determines their phonon modes. The thermal decomposition of the NiFe2O4 was investigated by TGA/DTA. The optical study UV–visible is used to calculate the band gap energy. Magnetic measurements of the samples were carried out by means of vibrating sample magnetometer and these studies reveal that the formed nickel ferrite exhibits ferromagnetic behavior. Photoluminescence showed three bands of luminescence located at 420, 440 and 535 nm. The photocatalytic properties of nickel ferrite (NiFe2O4) nanoparticles were evaluated by studying the photodecomposition of methyl orange as organic pollutant models and showed a good photocatalytic activity.  相似文献   

11.
We have studied the effect of the hydrothermal synthesis temperature on Al2O3 structure formation and examined the role of the phase composition of the precursor gel and surfactant in the formation of the pore structure of Al2O3. A technique has been proposed for the synthesis of TiO2/Al2O3 binary xerogels, and the effect of TiO2 content on the pore structure parameters and adsorption properties of TiO2/Al2O3 has been investigated.  相似文献   

12.
Contact interaction between Bi2O3-SiO2 melts and gold has been studied by the sessile drop method. The melts are shown to spread over gold and dissolve it.  相似文献   

13.
TiO2-sheathed Ga2O3 one-dimensional (1D) nanostructures were synthesized by thermal evaporation of GaN powders and then sputter-deposition of TiO2. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis results indicate that the Ga2O3 cores are of a single crystal nature with a monoclinic structure while the TiO2 shells are amorphous. Photoluminescence (PL) emission is slightly decreased in intensity by TiO2 coating, but it is significantly increased by thermal annealing in an oxygen atmosphere. The emission peak is also shifted from ~500 to ~550 nm by oxygen annealing. The increase in the green emission is due to the increase in the concentration of the Ga vacancies in the cores by the inflow of oxygen during oxygen annealing. On the other hand, annealing in a nitrogen atmosphere leads to a red shift of the emission to ~700 nm originating from nitrogen doping.  相似文献   

14.
Glasses of the ternary system ZnO–Bi2O3–P2O5 were prepared and studied in two compositional series 50ZnO–xBi2O3–(50 − x)P2O5 and (50 − y)ZnO–yBi2O3–50P2O5. Two distinct glass-forming regions were found in the 50ZnO–xBi2O3–(50 − x)P2O5 glass series with x = 0–10 and 20–35 mol.% Bi2O3. All prepared Bi2O3-containing glasses reveal a high chemical durability. Small additions of Bi2O3 (∼5 mol.%) improve thermal stability of glasses. All glasses crystallize on heating within the temperature range of 505–583 °C. Structural studies by Raman and 31P MAS NMR spectroscopies showed the rapid depolymerisation of phosphate chains within the first region with x = 0–15 and the presence of isolated Q0 phosphate units within the second region with x = 20–35. Raman studies showed that bismuth is incorporated in the glass structure in BiO6 units and their vibrational bands were observed within the spectral region of 350–700 cm−1. The evolution of properties and the spectroscopic data are both in accordance with a network former effect of Bi2O3.  相似文献   

15.
We have studied the stability of the Cr6+ ion in fine-particle TiO2-Cr2O3 oxides during storage after calcination in air. The results indicate that, during storage under normal conditions for 720 days, Cr6+ is reduced to Cr3+. The redox process is due to partial surface hydration of the Cr2O3 and TiO2 crystallites.  相似文献   

16.
The phase formation and reaction kinetics in the TiO2-Cr2O3 system have been studied by x-ray diffraction and electron microscopy. The Cr2O3 solubility in TiO2 has been accurately determined, and the rate parameters of the formation of solid solutions in this system have been evaluated. The results demonstrate that Cr2O3 dissolves in rutile and not in anatase. Cr2O3 markedly reduces the temperature of the anatase-rutile phase transition.  相似文献   

17.
We gave studied the crystallization behavior of 30BaO · 25Bi2O3 · 45B2O3 glasses doped with Eu2O3 to different levels. At a Eu2O3 content of 7 mol % or higher, the glasses undergo volume crystallization. The only precipitating phase is a solid solution between europium and bismuth oxides. With increasing europium concentration in the glass, the structure of the crystallites changes from cubic to rhombohedral. We have investigated the morphology, physicochemical properties, and luminescence spectra of the glasses and glass-ceramics.  相似文献   

18.
In this study, recent results from our electron, X-ray, and neutron-diffraction experiments with emphasis on the binary Bi1/2Na1/2TiO3-BaTiO3 (BNT–BT) and ternary Bi1/2Na1/2TiO3–BaTiO3–K0.5Na0.5NbO3 (BNT–BT–KNN) system are presented and contrasted with literature. The experimental results clearly revealed a phase coexistence on the nanoscale level. A systematic study of superlattice reflections in conjunction with microstructural characteristics showed that the BNT-based systems have specific properties in common, which, however, strongly depend on composition. In situ transmission electron microscopy (TEM) electric field experiments unequivocally demonstrated the evolution of lamellar domains. Combining in situ TEM results with published in situ neutron-diffraction experiments, we proposed an electric field-induced phase transition that results in the giant unipolar and bipolar strain observed in specific compositions of the ternary system.  相似文献   

19.
Crystalline mechanochemical synthesis products in the Bi2O3–GeO2 system are studied by x-ray diffraction. The results indicate the formation of sillenite (Bi12GeO20), eulytite (Bi4Ge3O12), and Aurivillius (Bi2GeO5) phases. The Aurivillius phase is shown to be in mechanochemical equilibrium with the sillenite phase in the 2Bi2O3 + GeO2 system and with the eulytite phase in the Bi2O 3 + GeO 2 system. The structural parameters of the synthesized metastable solid solutions are determined. The three phases contain high concen-trations of vacancies. In addition, the sillenite and Aurivillius phases are characterized by compositional disordering. Structural and ESR data point to partial reduction of the oxides, which accounts for the formation of the Aurivillius phase. According to x-ray photoelectron spectroscopy results, mechanical activation of bismuth oxide produces reduced binding energy states of Bi and O, which is tentatively attributed to clustering and the formation of complex radicals.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 711–719.Original Russian Text Copyright © 2005 by Zyryanov, Smirnov, Ivanovskaya.  相似文献   

20.
In a Bi2O3–B2O3–ZnO glass system, glass structure change, sintering behavior and resultant physical characteristics of the glass were examined when various amounts of Bi2O3 and ZnO mixture were added. When the total amount of Bi2O3 and ZnO was below 30 mol%, a phase separation occurred and homogeneous glass was not obtained. The fraction of four-coordinated borons (BO4) was highest when the total amount of Bi2O3 and ZnO was 50mol%. Further addition over 50 mol% induced a borate anomaly phenomenon in the glass, which resulted in the decrease in BO4 fraction. The sintering temperature and glass transition temperature decreased as the amount of Bi2O3 and ZnO increased. The thermal expansion coefficient and dielectric constant of the specimens were also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号