首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

2.
The aim of this research work is to represent the comparative study of ZnO/TiO2/ZnO (ZTZ) and TiO2/ZnO/TiO2 (TZT) thin films deposited by sol–gel dip coating on FTO substrates. After deposition, the films were annealed at 500 °C for 1 h. Structural, surface morphology, optical and electrical properties of these films were studied by X-ray diffractrometer (XRD), Raman spectra, atomic force microscope (AFM), photoluminescence spectra (PL) and four point probe technique respectively. XRD and Raman spectra confirmed the anatase, brookite phases of TiO2 and cubic phase of ZnO. AFM confirmed the formation of nano particles with average sizes of 18.4 and 47.2 nm of TZT and ZTZ films respectively. According to PL spectra, both the multilayer films slowdown the electron hole recombination rate and enhances the optoelectronic properties of the materials. Also it showed the peaks in the visible region of spectrum. The four point probe results showed that the average sheet resistivity of the films is 450 and 120 (ohm-m) respectively.  相似文献   

3.
A homogeneous α-Al2O3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al2O3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al2O3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al2O3 completely transformed into α-Al2O3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al2O3 intermediate layer to initially modify its surface. A single α-Al2O3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO2, SiO2, and TiO2–SiO2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al2O3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.  相似文献   

4.
High-damping materials are widely used in engineering fields. In order to increase the precision of vibration control to different levels, high-damping materials with high-rigidity are required. This study attempts to develop a new high-damping high-rigidity material using ductile ceramics based on the Al2TiO5–MgTi2O5 system, which has many continuous microcracks along the grain boundaries. Ductile ceramics have high internal friction (Q −1 = 0.01–0.037), but very low rigidity (<10 GPa). The rigidity of Al2TiO5–MgTi2O5 ceramics was improved by combining them with a polymer such as acrylic resin. The Young’s modulus and internal friction of the composites of Al2TiO5–MgTi2O5 ceramics and acrylic resin are investigated. They show high-damping capacity (Q −1 = 0.03–0.04) with high rigidity (E = 50–60 GPa), and their properties depend on those of the polymer. Thus, the composites fabricated using the above method can serve as high-damping high-rigidity materials.  相似文献   

5.
In this paper, the effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the phase formation, sintering characteristic, the microstructure and microwave dielectric properties of temperature-stable (Mg0.95Co0.05)2TiO4–Li2TiO3 ceramics were investigated. (Mg0.95Co0.05)2TiO4–Li2TiO3 powders were obtained by using the traditional solid-state process. A small amount of LBBS doping can effectively reduce sintering temperature and promote the densification of the ceramics. X-ray diffraction analysis revealed not only the primary phase (Mg·Co)2TiO4 associated with Li2TiO3 minor phase but also a third phase (Mg·Co)TiO3. The dielectric constant and Qf values vary with the doping amount of LBBS and sintering temperatures. With the compensation of the positive temperature coefficient (τ f ) of Li2TiO3 and the negative τ f of (Mg0.95Co0.05)2TiO4, the τ f of the specimens fluctuates around zero. The (Mg0.95Co0.05)2TiO4 ceramic with 2.5 wt% LBBS addition and sintering at 900?°C for 4 h exhibited excellent microwave dielectric properties: ? r ?=?19.076, Qf?=?126100 GHz, and τ f ?=?0.98 ppm/°C.  相似文献   

6.
CaO–SrO–Li2O–Ln2O3–TiO2 ceramics were prepared by solid state reaction method, where Ln2O3 consists of equal proportions of Nd2O3 and Sm2O3. Dielectric properties and crystal structure were investigated with respect to the content of TiO2. Single phase with an orthorhombic perovskites structure was formed within the composition range of investigation. The frequency dependence of dielectric properties of the present ceramics was extensively investigated. Dielectric constant was less sensitive to frequency. However, dielectric loss and temperature coefficients were both very sensitive to frequency and gradually decreased with increasing frequency, such as the variation was more than ten times between 1 MHz and several GHz. The relationship between the temperature coefficient and dielectric loss was also discussed at different frequencies. And the mechanism of the frequency dependence was discussed in term of the role of Li ions.  相似文献   

7.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

8.
3MgO–Al2O3–3TiO2 (MAT) ceramics were prepared by a conventional solid-state reaction method. The crystal structure, sintering behavior and microwave dielectric properties of ceramics were investigated using X-ray diffraction, scanning electron microscopy and network analyzer. MAT ceramics contained the coexistence of three phases, including MgAl2O4, MgTiO3 and MgTi2O5. The ceramics sintered at 1350 °C for 4 h presented excellent comprehensive performances with relative permittivity (ε r ) of 15.4, quality factor (Q × f) of 91,000 GHz and temperature coefficient of resonant frequency (τ f ) about ?55.1 ppm/°C.  相似文献   

9.
Lead-free ceramics (1???x)Bi0.5Na0.5TiO3xSr0.85Bi0.1TiO3 (BNT–xSBT, x?=?0.4, 0.5, 0.6 and 0.7) were prepared by a solid-state reaction process. Coexistence of ferroelectric relaxation at low temperature and Maxwell–Wagner dielectric relaxation at high temperature was revealed for the first time in this system. Meanwhile, hysteresis-free PE loops combined with a very high piezoelectric strain coefficient (d33) of 1658 pC/N concurrently with large electrostrictive coefficient Q?=?0.287 m4C?2 were achieved. The ferroelectric relaxor behavior and large electrostrictive strain might be linked to easy reorientation and reversal of ergodic PNRs and the combined effect of Bi off-center position and lone pair electrons.  相似文献   

10.
The structure, microstructure, field-induced strain, ferroelectric, piezoelectric and dielectric properties of (1 ? x) (Bi0.5Na0.5)0.935Ba0.065TiO3–xSr3CuNb2O9 (BNT-BT6.5–xSCN, with x = 0, 0.003, 0.006, 0.009) ceramics were investigated. X-ray diffraction patterns show that all samples are pure perovskite structure and Sr3CuNb2O9 (SCN) effectively diffused into the 0.935Bi0.5Na0.5TiO3–0.065BaTiO3 (BNT–BT6.5) solid solution which also reflected in the Raman spectra and the energy disperse spectroscopy (EDS) analysis. With the increases of SCN content, the coercive field (E c  = 18.41 kV/cm) decreases greatly, whereas the remnant polarization (P r  = 29.11 μC/cm2) increases a little at x = 0.003 which is showed in the polarization hysteresis (PE) loops, the result indicate that the ferroelectric order would be disrupted. Around critical composition (x = 0.003) at a driving field of 60 kV/cm, a large unipolar strain of 0.29 % with a normalized strain (d 33 *  = 483 pm/V) is obtained at room temperature. The results indicate that BNT-BT6.5-xSCN ceramics with excellent properties are promising to replace lead-based piezoelectric ceramics and can be used in practical applications.  相似文献   

11.
The (1−x) Ba0.40Sr0.60TiO3 (BST)−xZr0.80Sn0.20TiO4 (ZST) composite ceramics with x = 10, 20, 30, and 40 wt% were fabricated by conventional solid-state reaction method. With increasing of ZST content, the dielectric constant of composite ceramics was decreased and dielectric loss increases. The effect of ZnO addition to 70 wt% BST–30 wt% ZST composition on the microstructure and dielectric properties was investigated. The improvements in dielectric constant, dielectric loss, and microwave dielectric properties of composite ceramics can be achieved by ZnO addition. The sample with 98 wt% (70 wt% BST–30 wt% ZST)–2 wt%ZnO composition exhibits promising dielectric properties, with dielectric constant, loss tangent and tunability at 4 kV/mm, of 125, 0.0016 and 12%, at 10 kHz and room temperature. At ~2 GHz, it possesses a dielectric constant of 101 and a Q factor of 187, which makes it a good candidate for tunable microwave device applications.  相似文献   

12.
Two mesoporous oxide composites of Nd2O3–SiO2 and NdOCl–SiO2 were synthesized using SBA-15 as a template and neodymium nitrate or neodymium chloride as a precursor. The porous Nd2O3–SiO2 with a SBA-15-like structure has amorphous walls and the porous NdOCl–SiO2 with a replicated structure of SBA-15 has crystalline walls. These porous materials were characterized by X-ray diffraction, transmission electron microscopy and nitrogen adsorption/desorption. They exhibited significant proton conductivities in the presence of moisture at low temperatures and the highest conductivity observed was 4.55 × 10−4 S/cm at 47 °C in wet air (RH = 28.6%).  相似文献   

13.
Free-standing TiO2–SiO2/polyaniline (TS/PANI) composite nanofibers were prepared by electrospinning, in situ polymerization and calcination method. The effect of tetra-n-butyl titanate (TBT) in the electrospinning solution on the morphology and the ammonia sensing properties of TS/PANI composite nanofibers were investigated. The obtained nanofibers were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermo-gravimetric analysis and gas sensor test system. It is proved that too much TBT in the solution would make the fibrous morphology and ammonia sensing properties worse. Gas sensing tests showed that the TS/PANI composite nanofibers ammonia sensor can work at room temperature and possess ideal response values, selectivity and repeatability. With the increase in TiO2 content in the TS nanofibers, the ammonia sensing properties were improved because of the increase in P–N heterojunctions formed between TiO2 and PANI in the sensors.  相似文献   

14.
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaNb2O6 (BNT–BN100x), a new member of the BNT-based group, was prepared by conventional solid state reaction. X-ray diffraction showed that BaNb2O6 (BN) diffused into the lattice of Bi0.5Na0.5TiO3 to form a solid solution with perovskite-type structure. The temperature dependence of dielectric constant εr revealed that the solid solution underwent two phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. Both the transition temperature T d and T m were shifted to lower with the increasing content of BaNb2O6. The temperature dependence of dielectric constant at different frequency revealed that the solid solution exhibited obviously dielectric relaxation characteristics. The sample with x = 0.6 mol% exhibited excellent electrical properties, piezoelectric constant d 33 = 94 pC/N; electromechanical coupling factor k p = 0.185. The results showed that BNT–BN100x ceramics were good candidates for use as lead-free piezoelectric ceramics.  相似文献   

15.
In a recent report, the evaluation of the phase relations in the Bi2O3–TiO2–WO3 ternary system has shown the existence of a new phase with nominal composition close to Bi6Ti5WO22. In the present contribution we attempt to prepare this single phase by using a solid state route. Although XRD analyses also show traces of two minority Aurivillius-type phases in the synthesized materials, the crystal structure of the Bi6Ti5WO22 phase has been determined by Rietveld analyses revealing a complex structure similar to that of Bi3(AlSb2)O11 and PbHoAl3O8 related compounds. The electrical response of this new phase was characterized as well. Three peaks are observed in its dielectric response: two of them positioned around 0 °C and can be assigned to this Bi6Ti5WO22 structure. The third one rises up to 665 °C and confirms the presence of the Aurivillius-type phases.  相似文献   

16.
Catalytic combustion of methane was investigated on Pt and PdO-supported CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared by a wet impregnation method in the presence of polyvinylpyrrolidone. The catalysts were characterized by X-ray fluorescence analysis, X-ray powder diffraction, X-ray photoelectron spectra, transmission electron microscopy, and BET specific surface area measurements. The Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 and PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were selective for the total oxidation of methane into carbon dioxide and steam, and no by-products such as HCHO, CO, and H2 were obtained. The catalytic activities of the PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were relatively higher than those of the Pt-supported catalysts, due to the facile re-oxidation of metallic Pd into PdO based on lattice oxygen supplied from the CeO2–ZrO2–Bi2O3 bulk. A decrease in the calcination temperature during the preparation process was found to be effective in enhancing the specific surface area of the catalysts, whereby particle agglomeration was inhibited. Optimization of the PdO amount and calcination temperature enabled complete oxidation of methane at temperatures as low as 320 °C on the 11.6 wt% PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalyst prepared at 400 °C.  相似文献   

17.
The aim of the present investigation was to study the role of Al2O3 in the Li2O–CaO–P2O5–SiO2 bioactive glass for improving the bioactivity and other physico-mechanical properties of glass. A comparative study on structural and physico-mechanical properties and bioactivity of glasses were reported. The structural properties of glasses were investigated by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and the bioactivity of the glasses was evaluated by in vitro test in simulated body fluid (SBF). Density, compressive strength, Vickers hardness and ultrasonic wave velocity of glass samples were measured to investigate physical and mechanical properties. Results indicated that partial molar replacement of Li2O by Al2O3 resulted in a significant increase in mechanical properties of glasses. In vitro studies of samples in SBF had shown that the pH of the solution increased after immersion of samples during the initial stage and then after reaching maxima it decreased with the increase in the immersion time. In vitro test in SBF indicated that the addition of Al2O3 up to 1.5 mol% resulted in an increase in bioactivity where as further addition of Al2O3 caused a decrease in bioactivity of the samples. The biocompatibility of these bioactive glass samples was studied using human osteoblast (MG-63) cell lines. The results obtained suggested that Li2O–CaO–Al2O3–P2O5–SiO2-based bioactive glasses containing alumina would be potential materials for biomedical applications.  相似文献   

18.
(10Li2O–20GeO2–30ZnO–(40-x)Bi2O3xFe2O3 where x = 0.0, 3, 6, and 9 mol%) glasses were prepared. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, DC and AC conductivities, and dielectric properties (constant ε′, loss tan δ, AC conductivity, σ ac, over a wide range of frequency and temperature) of these glasses were carried out as a function of iron ion concentration. The analysis of the results indicate that, the density and molar volume decrease with an increasing of iron content indicates structural changes of the glass matrix. The glass transition temperature T g and onset of crystallization temperature T x increase with the variation of concentration of Fe2O3 referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter ΔT decrease with increase Fe2O3 content, indicates an increasing concentration of iron ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BiO3, BiO6, ZnO4, GeO4, and GeO6. The structural changes observed by varying the Fe2O3 content in these glasses and evidenced by FTIR investigation suggest that the iron ions play a network modifier role in these glasses while Bi2O3, GeO2, and ZnO play the role of network formers. The temperature dependence of DC and AC conductivities at different frequencies was analyzed using Mott’s small polaron hopping model and, the high temperature activation energies have been estimated and discussed. The dielectric constant and dielectric loss increased with increase in temperature and Fe2O3 content.  相似文献   

19.
Cr2O3–CNT/TiO2 composites derived from chromium acetylacetonate, multi-walled carbon nanotubes (MWCNT) and titanium n-butoxide (TNB) were prepared, and the photocatalytic activity of the Cr2O3–CNT and CNT/TiO2 composites was examined. The Cr2O3–CNT/TiO2 composites were characterized by BET surface area measurement, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray analysis. The photocatalytic activity was determined from the decomposition of methylene blue (MB) under visible light irradiation. Methylene blue was photodegraded successfully in the presence of the Cr2O3–CNT/TiO2 composite under visible light irradiation.  相似文献   

20.
Herein, we report the results of the in vitro dissolution tests, which were carried out by immersing the selected glass-ceramic samples in artificial saliva (AS) for various time periods of up to 42 days. In our experiments, the SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics with different crystal morphology and crystal content were used and a comparison is also made with the baseline glass samples (without any crystals). The bioactivity of the samples was probed by measuring the changes in pH, ionic conductivity and ionic concentration of AS following in vitro dissolution experiments. High resistance of the selected glass-ceramic samples against in vitro leaching has been demonstrated by minimal weight loss (<1%) and insignificant density change, even after 6 weeks of dissolution in artificial saliva. While XRD analysis reveals the change in surface texture of the crystalline phase, FT-IR analysis weakly indicated the Ca-P compound formation on the leached surface. The experimental measurements further indicate that the leaching of F(-), Mg(2+) ions from the sample surface commonly causes the change in the surface chemistry. Furthermore, the presence of (Ca, P, O)-rich mineralized deposits on the leached glass-ceramic surface as well as the decrease in Ca(2+) ion concentrations in the leaching solutions (compared to that in the initial AS solution) provide evidences of the moderate bioactive or mild biomineralisation behaviour of investigated glass-ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号