共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng He Shuhua Qi Xiaolan Zhong Hua Oiu Jin Wang 《Journal of Materials Science: Materials in Electronics》2014,25(8):3455-3460
The low-density, conductive and magnetic hollow glass microspheres (HGM)/Fe3O4/Ag composites have been successfully synthesized via co-precipitation and chemical plating method. The morphology, composition, microstructure, magnetic and microwave absorbing properties of the composites were investigated based on the analyses of the results using scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, vibrating sample magnetometer and vector network analyzer. The results showed that the HGM/Fe3O4 composites were successfully prepared, and the coating layers on the surface of HGM are compact and continuous. Moreover, the final composites were completely covered with Ag nanoparticles. With the addition of Ag nanoparticles, the saturation magnetization of the HGM/Fe3O4 composites reduces from 32.08 to 14.77 emu/g, whereas its conductivity increases to 0.48 S/cm. The reflection loss (R) of HGM/Fe3O4/Ag composites is lower than ?10 dB at 8.2–8.7, 9.6–10.8 and 11.4–11.9 GHz, and the minimum loss value is ?19.1 dB at 9.9 GHz. 相似文献
2.
Xingwei Wang Meiyu Yang Hongxia Yan Shuhua Qi 《Journal of Materials Science: Materials in Electronics》2017,28(20):14988-14995
An excellent PPy/NiFe2O4/CS microwave absorbing materials with a three-layer core–shell structure, was synthesized successfully by two reaction steps of solvothermal reaction and in situ polymerization. The surface morphology, phase structure and chemical components of the composite have been characterized by a scanning electron microscope, X-ray diffraction and X-ray photoelectron spectroscope. The results suggest that the surface of CS is covered by NiFe2O4 completely and PPy wraps the obtained NiFe2O4/CS successfully. The conductivity and the saturation magnetization (Ms) of the resulting PPy/NiFe2O4/CS composites are 0.38 S/cm and 46 emu/g, respectively. The vector network analysis shows the composite performs better microwave absorbing ability than that of CS and NiFe2O4/CS. The maximum reflection loss of the composite with 1.97 mm coating thickness is ?53 dB at 10.5 GHz and the bandwidth of reflection loss less than ?10 dB is 3.4 GHz (8.9–12.3 GHz). This ternary composite with light weight, thin thickness and strong absorbing capacity can be an attractive candidate in the field of microwave absorption. 相似文献
3.
Core–shell Ni/TiO2 composite microspheres with different crystallinity have been prepared at various reaction times by the solvothermal method. The crystal structure and morphology of the products were investigated by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The microwave absorption properties of the core–shell Ni/TiO2 composites were investigated at 1.0–18.0 GHz. The results show that the morphology and microwave absorption performances of Ni/TiO2 composites were largely influenced by the crystallinity of TiO2 shells. The crystallinity of anatase TiO2 can be increased with increasing reaction time. Minimum peaks of Ni/TiO2 composites shift to the high frequency with increasing the crystallinity of anatase TiO2, which are due to high thermal conductivity of high crystallinity of TiO2. The Ni/TiO2 prepared at 36 h exhibits the best microwave absorption properties with minimum reflection loss of ?16.9 dB at 14.1 GHz. 相似文献
4.
Jin Huang Huanfu Zhou Nan Wang Xianghu Tan Guangchao Fan 《Journal of Materials Science: Materials in Electronics》2017,28(6):4565-4569
3MgO–Al2O3–3TiO2 (MAT) ceramics were prepared by a conventional solid-state reaction method. The crystal structure, sintering behavior and microwave dielectric properties of ceramics were investigated using X-ray diffraction, scanning electron microscopy and network analyzer. MAT ceramics contained the coexistence of three phases, including MgAl2O4, MgTiO3 and MgTi2O5. The ceramics sintered at 1350 °C for 4 h presented excellent comprehensive performances with relative permittivity (ε r ) of 15.4, quality factor (Q × f) of 91,000 GHz and temperature coefficient of resonant frequency (τ f ) about ?55.1 ppm/°C. 相似文献
5.
Yiming Xie Lingjie Wang Qiyao Guo Jie Yin Jia Liu Leqing Fan Jihuai Wu 《Journal of Materials Science: Materials in Electronics》2018,29(10):7957-7964
Tubular manganese dioxide (MnO2) is synthesized by hydrothermal method, and a silicon dioxide (SiO2) used as template is wrapped on the as-synthesized MnO2. Then poly(styrene-co-divinylbenzene) (PS) as heteropolymeric carbon precursor was wrapped on as-prepared MnO2/SiO2 to form intermediate product MnO2@SiO2@PS. The intermediate products were treated by carbon tetrachloride, stripped template and carbonized, thus the final product MnO2/porous carbon composite (MnO2@PC) with core–shell structure was obtained. The core–shell structural composite is used as an electrode of supercapacitors, which combines high conductivity and high surface specific area of porous carbon material and high electrochemical activity of MnO2. The resulting core–shell MnO2@PC exhibits a maximum specific capacitance of 196.2 F g?1 at a discharge density of 1 A g?1 with capacitance retention of 78.52% over 5000 discharge/charge cycles. 相似文献
6.
Polyaniline/strontium hexaferrites (PANI/SrFe12O19) composites were synthesized by the oxidative chemical polymerization of aniline in the presence of APS. X-ray powder diffraction of ferrites indicated that the structure of core materials is hexagonal with lattice constants around 5.886–5.885 Å. The structural in the character of the sol–gel was investigated with Fourier transform infrared spectrometer analysis. SEM and TEM photographs show that the particle size of core material is around 50–200 nm. After coating with polyaniline, the particle size of the core–shell of PANI/SrFe12O19 has grown up to 100~300 nm. In the magnetization for the PANI/SrFe12O19 composites, it was found that the saturation magnetization (M s) and coercivity (H c) decreased after polyaniline coating. The composite under applied magnetic field exhibited the hysteretic loops of the ferromagnetic behavior, such as high saturation magnetization (M s = 18.9 emu/g) and coercivity (H c = 3850.0 Oe). The conductivity of the core–shell materials increased with increasing amounts of polyaniline as the temperature increased from 0 to 50 °C, the conductivity increased by about 13%. The polymerization mechanism for the core–shell composites was also investigated. The composite specimens of core–shell PANI/SrFe12O19 and thermal plastic resin (TPR) had band-width microwave absorption due to reflection losses from ?27.3 to ?37.4 dB at frequencies between 10.5 and 11.8 GHz as observed by High-frequency network analyzer. 相似文献
7.
S. Bindra Narang Shalini Bahel S. Dash 《Journal of Materials Science: Materials in Electronics》2010,21(11):1186-1190
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi
z
)9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by
X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents
using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from
83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from
z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas
loss tangent is adversely affected with increase in Bi substitution. 相似文献
8.
Chunhua Tian Yunchen Du Chunsheng Cui Zhiliang Deng Jianlei Xue Ping Xu Rong Qiang Ying Wang Xijiang Han 《Journal of Materials Science》2017,52(11):6349-6361
Rational design on the microstructure of microwave-absorbing materials is paving the way for upgrading their performances in electromagnetic pollution prevention. In this study, a Fe3O4/C composite with unique yolk–shell microstructure (YS-Fe3O4@C) is successfully fabricated by a silica-assisted route. It is found that carbon shells in this composite can make up the shortages of Fe3O4 microspheres in dielectric loss ability, while they may more or less attenuate the intrinsically magnetic loss of Fe3O4 microspheres. The microwave absorption properties of YS-Fe3O4@C are evaluated in the frequency range of 2.0–18.0 GHz in terms of the measured complex permittivity and complex permeability. The results demonstrate that YS-Fe3O4@C can exhibit much better performance than bare Fe3O4 microspheres and individual carbon materials, as well as core–shell Fe3O4/C composite (CS-Fe3O4@C), where strong reflection loss and wide response bandwidth can be achieved simultaneously. With an absorber thickness of 2.0 mm, the maximum reflection loss is ?73.1 dB at 14.6 GHz and a bandwidth over ?10.0 dB is in the range of 12.3–18.0 GHz. It can be proved that the unique yolk–shell microstructure is helpful to reinforce the dielectric loss ability and create an optimized matching of characteristic impedance in the composite. 相似文献
9.
In this work, we have described the antibacterial activities of Fe3O4 nanoparticles with different organic parts, including Humic acid (HA), Nicotinic acid (Nico) and Histidine (His), and the antibacterial activity of MnFe2O4 nanoparticles coated with PANI and SiO2 against different bacteria and some standard antibacterial drugs. The present study revealed that the newly fabricated various Fe3O4 and MnFe2O4 nanocomposites, when combined with some different organic parts, are superiour antibacterial agents. Also, the synthesized nanocomposites can be easily separated from aqueous solution by magnetic filtration without any contamination of the medium. 相似文献
10.
Cr2O3–CNT/TiO2 composites derived from chromium acetylacetonate, multi-walled carbon nanotubes (MWCNT) and titanium n-butoxide (TNB) were prepared, and the photocatalytic activity of the Cr2O3–CNT and CNT/TiO2 composites was examined. The Cr2O3–CNT/TiO2 composites were characterized by BET surface area measurement, X-ray diffraction, transmission electron microscopy, and energy
dispersive X-ray analysis. The photocatalytic activity was determined from the decomposition of methylene blue (MB) under
visible light irradiation. Methylene blue was photodegraded successfully in the presence of the Cr2O3–CNT/TiO2 composite under visible light irradiation. 相似文献
11.
Hui-Juan Wang Tilman Zscheckel Bo-Tao Li Hui-Xing Lin Christian Bocker Christian Rüssel Lan Luo 《Journal of Materials Science》2017,52(3):1330-1347
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C. 相似文献
12.
TiO2–NiO and TiO2–WO3 nanocomposites were prepared by hydrothermal and surface modification methods. The samples were analyzed using X-ray diffraction, Scanning Electron Microscope images, Transmission Electron Microscope, Energy dispersive analysis, Zeta potential, Electrophoretic mobility and Photocatalysis activity measurement. XRD data sets of TiO2–NiO, TiO2–WO3 powder nanocomposite have been studied for the inclusion of NiO, WO3 on the anatase-rutile mixture phase of TiO2 by Rietveld refinement. The cell parameters, phase fraction, the average grain size, strain and bond lengths between atoms of individual phases have been reported in the present work. Shifted positional co-ordinates of individual atoms in each phase have also been observed. 相似文献
13.
The (1−x) Ba0.40Sr0.60TiO3 (BST)−xZr0.80Sn0.20TiO4 (ZST) composite ceramics with x = 10, 20, 30, and 40 wt% were fabricated by conventional solid-state reaction method. With increasing of ZST content, the
dielectric constant of composite ceramics was decreased and dielectric loss increases. The effect of ZnO addition to 70 wt%
BST–30 wt% ZST composition on the microstructure and dielectric properties was investigated. The improvements in dielectric
constant, dielectric loss, and microwave dielectric properties of composite ceramics can be achieved by ZnO addition. The
sample with 98 wt% (70 wt% BST–30 wt% ZST)–2 wt%ZnO composition exhibits promising dielectric properties, with dielectric
constant, loss tangent and tunability at 4 kV/mm, of 125, 0.0016 and 12%, at 10 kHz and room temperature. At ~2 GHz, it possesses
a dielectric constant of 101 and a Q factor of 187, which makes it a good candidate for tunable microwave device applications. 相似文献
14.
Gadolinium doped bismuth borate glasses containing up to 30 mol% Y2O3 were prepared by fast melt quenching method. The effect of yttrium on the local order in 3B2O3 · Bi2O3 and B2O3 · Bi2O3 glass matrices, particularly on the bismuth sites, was investigated by infrared (IR) spectroscopy and electron paramagnetic
resonance (EPR) of Gd3+ ions. The IR results show that the local structure is more ordered in the glass system with higher bismuth content and the
progressive addition of yttrium increases the local disorder in both bismuth–borate glass matrices. The EPR results indicate
that Gd3+ ions occupy both bismuth and yttrium sites and reflect the same structural disorder like that suggested by IR results. 相似文献
15.
Susumu Ikeno Kenji Matsuda Toshimasa Matsuki Toshiaki Suzuki Noriaki Endo Tokimasa Kawabata Yasuhiro Uetani 《Journal of Materials Science》2007,42(14):5680-5685
The formation mechanism of spinels on Al2O3 particles in the Al2O3/Al–1.0 mass% Mg2Si alloy composite material has been investigated by transmission electron microscopy (TEM) in order to determine the crystallographic
orientation relationship. A thin sample of the Al2O3/Al–Mg–Si alloy composite material was obtained by the FIB method, and the orientation relationship between Al2O3 and MgAl2O4, which was formed on the surface of Al2O3 particles, was discovered by the TEM technique as follows:
At the interface between the Al2O3 and the matrix the MgAl2O4 (spinel) crystals had facets of {111} planes. Spinels were not grown as thin films, but as particles consisting of {111}
planes. They grow towards both the matrix and the Al2O3 particles. 相似文献
16.
N S VEDEANU I B COZAR R STANESCU R STEFAN D VODNAR O COZAR 《Bulletin of Materials Science》2016,39(3):697-702
The xV2O(1?x)[0.8 P2O5 ? 0.2 K2O] glass system with 0 ≤ x ≤ 50 mol% was prepared and the structural changes induced in these glasses by increasing the vanadium oxide content were investigated by IR and ESR spectroscopies. The dual behaviour role of V2O5 oxide, as network modifier (for x ≤ 10 mol%) and the network former (x ≥ 20 mol%), as a consequence of phosphate network depolymerization and P–O–V and V–O–V linkages appearance was also highlighted. The antibacterial effect of the glasses with x ≤ 20 mol% V2O5 content was tested by optical density (OD) measurements. A linear correlation between the amount of vanadium and the antibacterial effect was evidenced. 相似文献
17.
Chandrababu Rejeeth Xuechao Pang Ru Zhang Wei Xu Xuming Sun Bin Liu Jiatao Lou Jingjing Wan Hongchen Gu Wei Yan Kun Qian 《Nano Research》2018,11(1):68-79
Serum biomarkers in the form of proteins (e.g. cluster of differentiation-44 (CD44)) have been demonstrated to have high clinical sensitivity and specificity for disease diagnosis and prognosis. Owing to the high sample complexity and low molecular abundance in serum, the detection and profiling of biomarkers rely on efficient extraction by materials and devices, mostly using immunoassays via antibody-antigen recognition. Antibody-free approaches are promising and need to be developed for real-case applications in serum to address the limitations of antibody-based techniques in terms of robustness, expense, and throughput. In this work, we demonstrated a novel approach using hyaluronic acid (HA)-modified materials/devices for the extraction, detection, and profiling of serum biomarkers via ligand-protein interactions. We constructed Fe3O4@SiO2@HA particles with different sizes through layer-by-layer assembly and for the first time applied HA-functionalized particles in the facile extraction and sequence identification of CD44 in serum by mass spectrometry. We also first validated HA-CD44 binding through electrochemical sensing using HA-modified electrodes in both standard solutions and diluted serum samples, achieving a detection limit of ~0.6 ng/mL and a linear response range from 1 ng/mL to 10 μg/mL. Furthermore, we performed profiling of HA-binding serum proteome, providing a new preliminary benchmark for the construction of future databases, and we investigated selected surface chemistries of particles for the capture of proteins in serum. Our work not only resulted in the development of a platform technology for CD44 extraction/detection and HA-binding proteome identification, but also guided the design of ligand affinity-based approaches for antibody-free analysis of serum biomarkers towards diagnostic applications. 相似文献
18.
xV2O5·(100 − x)[0.7P2O5·0.3CaO] glass system was obtained for 0 ≤ x ≤ 35 mol% V2O5. In order to obtain information regarding their structure, several techniques such as X-Ray diffraction, FT-IR, and EPR spectroscopies
were used. X-Ray diffraction patterns of investigated samples are characteristic of vitreous solids. FT-IR spectra of 0.7P2O5·0.3CaO glass matrix and its deconvolution show the presence in the glass structure of all structural units characteristic
to P2O5. Their number are increasing for x ≤ 3 mol% V2O5 then, for higher content of vanadium ions, the number of phosphate structural units are decreasing leading to a depolymerization
of the structure. The structural units characteristic to V2O5 were not evidenced but their contribution to the glass structure can be clearly observed. EPR revealed a well resolved hyperfine
structure (hfs) typical for vanadyl ions in a C4v symmetry for x ≤ 3 mol% V2O5. For 5 < x < 20 mol% V2O5 the spectra show a superposition of two EPR signals one due to a hfs structure and another consisting of a broad line typical
for associated V4+–V4+ ions. For x ≥ 20 mol% V2O5 only the broad line can be observed. The composition dependence of the line-width suggests the presence of dipole–dipole
interaction between vanadium ions up to x ≤ 5 mol% V2O5 and superexchange interactions between vanadium ions for x > 5 mol% V2O5. 相似文献
19.
Hiroyuki Hayashi Rong Huang Fumiyasu Oba Tsukasa Hirayama Isao Tanaka 《Journal of Materials Science》2011,46(12):4169-4175
The interface between an Mn-doped γ-gallium oxide (Ga2O3) thin film and an MgAl2O4 (001) substrate has been investigated using high-resolution transmission electron microscopy (HRTEM), high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM), and first-principles calculations. A high-quality Mn-doped
γ-Ga2O3 film with a defective spinel structure has been epitaxially grown by pulsed laser deposition. The γ-Ga2O3 crystal shows an uniform tetragonal distortion with a tetragonality of 1.05 throughout the film thickness of 75 nm. HRTEM
and HAADF-STEM observations reveal that the γ-Ga2O3 and MgAl2O4 crystals form a coherent interface without any interfacial layers or precipitates. The atomistic structure and energies are
theoretically evaluated for the interfaces with two types of termination plane, i.e., Mg- and Al2O4-termination of MgAl2O4. The cation sublattice is found to be continuous for both interfaces despite the defective spinel structure of Mn-doped γ-Ga2O3 with some vacant cation sites. The Al2O4-termination shows a lower interfacial energy than the Mg-termination under most conditions of the chemical potentials. This
behavior is attributed to the energetic preference of the Mn–Al2O4 local configuration at the interface. 相似文献
20.
M. I. Khan Muhammad Saleem K. A. Bhatti Rabia Qindeel Hayat Saeed Althobaiti Noorah Alonizan 《Journal of Materials Science: Materials in Electronics》2017,28(23):17499-17504
The aim of this research work is to represent the comparative study of ZnO/TiO2/ZnO (ZTZ) and TiO2/ZnO/TiO2 (TZT) thin films deposited by sol–gel dip coating on FTO substrates. After deposition, the films were annealed at 500 °C for 1 h. Structural, surface morphology, optical and electrical properties of these films were studied by X-ray diffractrometer (XRD), Raman spectra, atomic force microscope (AFM), photoluminescence spectra (PL) and four point probe technique respectively. XRD and Raman spectra confirmed the anatase, brookite phases of TiO2 and cubic phase of ZnO. AFM confirmed the formation of nano particles with average sizes of 18.4 and 47.2 nm of TZT and ZTZ films respectively. According to PL spectra, both the multilayer films slowdown the electron hole recombination rate and enhances the optoelectronic properties of the materials. Also it showed the peaks in the visible region of spectrum. The four point probe results showed that the average sheet resistivity of the films is 450 and 120 (ohm-m) respectively. 相似文献