首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(100)AlN films have better surface acoustic wave (SAW) properties than (002) AlN films. In this research, (100) AlN films were combined with diamonds as a new composite SAW substrate. The SAW properties of (100) AlN films on diamonds were analyzed with 4 composite structures: interdigital transducer (IDT)/(100)AlN/diamond, (100)AlN/IDT/diamond, IDT/(100)AlN/metal/diamond, and metal/IDT/(100) AlN/diamond, and they exhibited some excellent SAW properties. Our research results provide a predictable and theoretical basis for further application on high-velocity SAW devices.  相似文献   

2.
Recently, in the electronics and pharmaceutical industries, miniature devices that can transport a tiny amount of dry powder with a particle size of 100 μm or less are desired. We therefore focused on a surface acoustic wave (SAW) device, and we experimentally studied an interdigital transducer (IDT) that generates the SAW. As a result, it was found that an IDT with a 2-mm pitch size at a 90° inclination angle, against the perpendicular direction of a piezoelectric wafer (127.8° y-rotated x-propagating LiNbO3) orientation flat, had a high efficiency of copper powder (about 100-μm particle size) transport. Then, to investigate the availability of a SAW actuator with this highly efficient IDT, we fabricated a miniature feeder (13-mm height × 18-mm width × 78-mm length) mounted with a hopper on the SAW actuator and carried out a powder supply experiment. As a result, it was found that, when 1 W of electric power was applied to the IDT of the feeder, the powder supply capability of the feeder was about 18 mg/s. From this fact, it was experimentally shown that a SAW actuator with a highly efficient IDT has a great potential to control dry powder with superior accuracy.  相似文献   

3.
The Bi1?+?xFe0.95Cr0.05O3 (BFCO) (x?=?0, 5, 10, 15 and 20%) thin films are fabricated on FTO/glass substrate using a chemical solution deposition method and sequential-layer annealing process. The effects of the excess Bi content on crystalline structure, morphology, and electrical performance of BFCO thin films are investigated. All the BFCO thin films are crystallized into polycrystalline perovskite structure and belonging to the space group of R3c. The BFCO thin films with 5 and 10% excess Bi contents possess no impurity phase. Especially, a dense surface morphology and columnar crystal structure can be obtained for the film with 5% excess Bi content. Especially, the one possesses superior ferroelectricity with a relative high remnant polarization (P r) of 69.8 µC/cm2 and low coercive electric field (E c) of 291 kV/cm at 1 kHz due to the relatively low leakage current density of 3.04?×?10??5 A/cm2 at 200 kV/cm.  相似文献   

4.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

5.
An attempt has been made to correlate the morphological and electrical properties of RF sputtered aluminum nitride (AlN), with target to substrate distance (D ts) in sputter chamber. AlN films, having thickness around 3,000 Å, were deposited on silicon substrates with different D ts values varying from 5 to 8 cm. XRD results indicated that the crystallinity of c-axis oriented films increase significantly with decrease in D ts and the FTIR absorption band of the films became prominent at shorter D ts. The surface roughness increased from 1.85 to 2.45 nm with that in D ts. A smooth surface with smaller grains was found at shorter D ts. The capacitance–voltage (C–V) measurements revealed that the insulator charge density (Q in) increased from 3.3 × 1011  to 7.3 × 1011 cm?2 and the interface state density (D it) from 1.5 × 1011  to 7.3 × 1011 eV?1cm?2 with the increase in D ts.  相似文献   

6.
This paper presents a comprehensive characterization of a polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) thin film with 75/25 molar ratio for piezoelectric MEMS applications. PVDF-TrFE film was deposited on a silicon substrate using spin coating, and electrodes were formed using sputtering. Dielectric constant and dielectric loss factor were measured at different frequencies. Frequency and temperature dependence of the ferroelectric response was examined to investigate required poling conditions and maximum operating temperature. The lower limit for the coercive field was measured as 55 V/μm at room temperature. Coercive field decreased with temperature with a slope of ?0.1 V/μm K, and ferroelectric to paraelectric transition occurred between 100? and 108?°C. Piezoelectric displacement measurements were performed using an atomic force microscope based method. Average value of the effective piezoelectric d33 coefficient was measured as ?23.9 pm/V. No degradation was observed in this value after 2?×?105 unipolar excitation cycles. On the other hand, significant fatigue was observed in the piezoelectric response due to polarization switching; 1.8?×?105 cycles caused an average reduction of 33% in the effective d33. Presented data corroborates with the previous studies in the literature and can be used in the design of PVDF-TrFE based MEMS devices utilizing its dielectric, ferroelectric, and piezoelectric properties.  相似文献   

7.
The effect of BiErO3 (BE) as a doping material on the structural, dielectric and ferroelectric properties of (KNa)NbO3 ceramics was explored in this research. Co-existence of two phase regions was confirmed in the composition range at x?=?0.5% and x?=?1.0%. The addition of BE content led to a decrease of the grain size and the ceramics became denser. Bulk P–E hysteresis loops were obtained with a maximum polarization of P max = 30.56 µC/cm2 and a remnant polarization of P r = 25.10 µC/cm2, along with a coercive field of E c  ~ 11.26 kV/cm. The results revealed that a field strain value of ~?0.26 for x?=?0.5% of BE substitution was attained. This presents outstanding piezoelectric and dielectric properties.  相似文献   

8.
We report on the orientation control of a seeding layer for sol–gel derived Bi3.15Nd0.85Ti3O12 thin films by optimizing the layer thickness and processing parameters including annealing temperature and time. A 75-nm-thick seeding layer with (100) preferential orientation can be obtained on SiO2/Si substrate by annealing at 560 °C for 3 min. The Bi3.15Nd0.85Ti3O12 thin film grown on this optimized seeding layer exhibits a much higher relative intensity of (200) X-ray diffraction peak, which in turn results in more squared PE hysteresis loops, larger remanent polarization (2P r ~ 62 μC/cm2) and piezoelectric coefficient (d 33 ~ 74 pm/V) compared to the film without the optimized first layer prepared using the conventional sequential layer annealing method.  相似文献   

9.
CuInGeSe4 thin films of various thicknesses were prepared on a glass substrate by thermal evaporation followed by selenization at 700 K. Energy dispersive X-ray analysis shows that the CuInGeSe4 thin films are near stoichiometric. The X-ray diffraction patterns indicate that the as-deposited CuInGeSe4 thin films are amorphous, while the CuInGeSe4 thin films annealed at 700 K are polycrystalline with the chalcopyrite phase. The structure of the films was further investigated by transmission electron microscopy and diffraction, with the results verifying the X-ray diffraction data. High-resolution scanning electron microscopy images show well-defined grains that are nearly similar in size. The surface roughness increases with film thickness, as confirmed by atomic force microscopy. The optical transmission and reflection spectra of the CuInGeSe4 thin films were recorded over the wavelength range of 400–2500 nm. The variation of the optical parameters of the CuInGeSe4 thin films, such as the refractive index n and the optical band gap Eg, as a function of the film thickness was determined. The value of Eg decreases with increasing film thickness. For the studied films, n were estimated from the Swanoepl’s method and were found to increase with increasing film thickness as well as follow the two-term Cauchy dispersion relation. A heterojunction with the configuration Al/n–Si/p–CuInGeSe4/Au was fabricated. The built-in voltage and the carrier concentration of the heterojunction was determined from the capacitance–voltage measurements at 1 MHz and were found to be 0.61 V and 3.72?×?1017 cm?3, respectively. Under 1000 W/m2 solar simulator illumination, the heterojunction achieved a conversion efficiency of 2.83%.  相似文献   

10.
Periodic arrays of Fe x Sn1?x O2 nanostructures were fabricated by glancing angle sputter deposition onto self-assembled close-packed arrays of 200-nm-diameter polystyrene microspheres. After annealing at 873 K for 3 h, all the films were crystallized to rutile SnO2 and maintained good thermal stability in the morphology. Compared with Fe x Sn1?x O2 flat films, arrays of Fe x Sn1?x O2 nanostructures possessed larger saturation magnetic moment and exhibited both perpendicular and in-plane magnetic anisotropy, resulting from the anisotropic morphology of Fe x Sn1?x O2 nanostructures. The EPR signal originating from the oxygen vacancies significantly varied with the Fe concentration and reached the strongest at x = 0.059, which is consistent with the saturation magnetization. It demonstrates that the oxygen vacancies are an important factor for the ferromagnetism of Fe x Sn1?x O2 films.  相似文献   

11.
Electroluminescence (EL) properties of AlN:Tb thin film EL device (TFELD) prepared on a glass substrate by a rf-magnetron sputtering method have been studied. The AlN:Tb emission layer consists of hexagonal (110)-oriented poly-crystals of AlN with a high transparency in visible region. Four emission peaks originating from 5D→ 7F j (j = 6, 5, 4, 3) transitions of Tb3+ were found in both photoluminescence (PL) and EL spectra of the AlN:Tb thin film. The peak emission intensity of the 5D→ 7F6 transitions is almost the same magnitude with that of the 5D→ 7F5 transitions, being largely different from the intensity ratio of Tb3+in other host materials.  相似文献   

12.
Bi0.5Sb1.5Te3.0 thin films were deposited on silicon substrates at room temperature by co-sputtering and the effects of annealing temperatures on structure and thermoelectric properties were investigated. The composition, crystallinity, and microstructure of these thin films were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. The crystalline quality of the thin films was enhanced with a rising annealing temperature. When annealed at 573 K, the layered structure of the Bi0.5Sb1.5Te3.0 thin films with a preferred orientation along the (00l) plane was formed. However, excessive high annealing temperature caused the thin films to become porous due to the separation of substantial Sb-rich precipitates. The electrical transport properties of the thin films, in terms of electrical conductivity and Seebeck coefficient were determined at room temperature. The carrier concentration and mobility were calculated from the Hall coefficient measurement. By optimizing the annealing temperature and time to 573 K for 6 h, the thermoelectric power factor was enhanced to 22.54 μW/(cm K2) at its maximum with a moderate electrical conductivity of 6.21 × 10S/cm and a maximum Seebeck coefficient of 190.6 μV/K.  相似文献   

13.
Antimony telluride (Sb2Te3) thin films were deposited on silicon substrates at room temperature (300 K) by radio frequency magnetron sputtering method. The effects of annealing in N2 atmosphere on their thermoelectric properties were investigated. The microstructure and composition of these films were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The electrical transport properties of the thin films, in terms of electrical conductivity and Seebeck coefficient were determined at room temperature. The carrier concentration and mobility were calculated from the Hall coefficient measurement. Both of the Seebeck coefficient and Hall coefficient measurement showed that the prepared Sb2Te3 thin films were p-type semiconductor materials. By optimizing the annealing temperature, the power factor achieved a maximum value of 18.02 μW cm?1 K?2 when the annealing temperature was increased to 523 K for 6 h with a maximum electrical conductivity (1.17 × 10S/cm) and moderate Seebeck coefficient (123.9 μV/K).  相似文献   

14.
In this paper, (1 ? x)(K0.5Na0.5)NbO3xBi(Mg0.75W0.25)O3 (x = 0–0.015) lead-free dielectric ceramics were investigated. XRD analysis certified that the Bi(Mg0.75W0.25)O3 has diffused into (K0.5Na0.5)NbO3 to fabricate a new solid solution. The addition of Bi(Mg0.75W0.25)O3 depressed the orthorhombic–tetragonal phase transition temperature from 210 to 176 °C and tetragonal–pseudocubic phase transition temperature (Curie point) from 419 to 400 °C. As x = 0.005, the ceramics exhibited high relative permittivity (ε ~ 1325), low dielectric loss (tan δ < 2.9%) tan δ stability (Δε/ε168°C ≤ ±15%) in the temperature range of 168 ~ 369 °C. Especially, the ceramics also showed optimized piezoelectric constant (d 33 = 122 pC N?1) and remnant polarization (Pr = 32.57 μC cm–2). These results indicated that the BMW added ceramics have potential applications in ferroelectric and thermal stability devices.  相似文献   

15.
This paper discusses the advantages of a room-temperature poling procedure during exposure to ultraviolet light for Pb(Zr0.52Ti0.48)O3 (PZT) films. The results of these experiments include the following: for 1.7-µm-thick chemical solution-deposited PZT films, the saturation photocurrent density after a 10 min white light exposure (190–1900 nm) (no DC bias field applied) increased up to 0.066 µA/cm2 with increasing Cr thickness of top electrode in Cr/Pt bilayer electrodes. Furthermore, the d33,f piezoelectric coefficients for UV-poled samples were 40 and 20% higher than those achieved from field-only poling at either room temperature or 150 °C. Additionally, the development of an internal bias field and pinching were investigated in major and minor polarization–electric field loops. It was found that ultraviolet illumination during the poling process produced photoinduced charge carriers that became trapped by local defects and/or grain boundaries in the films.  相似文献   

16.
Pure K0.5Na0.5NbO3 lead-free piezoelectric ceramics without any dopants/additives were sintered at various temperatures (950–1125 °C) in low pO2 atmosphere (pO2?~?10?6 atm). All ceramics exhibit high relative densities (>?94%) and low weight loss (<?0.6%). Compared to the ceramics sintered in air, the ceramics sintered in low pO2 exhibit improved electrical properties. The piezoelectric constant d33 and converse piezoelectric constant d33* are 112 pC/N and 119 pm/V, respectively. The ceramics show typical ferroelectric behavior with the remnant polarization of 21.6 µC/cm2 and coercive field of 15.5 kV/cm under measurement electric field of 70 kV/cm. The good electrical properties of the present samples are related to the suppression of volatility of the alkali cations during the sintering process in low pO2 atmosphere.  相似文献   

17.
(Na0.85K0.15)0.5Bi0.5Ti(1-x)Nb x O3 (NKBT-N100x) thin films were deposited on Pt/Ti/SiO2/Si(100) substrates by metal–organic decomposition method and annealed in oxygen atmosphere at 750 °C. The effects of niobium concentration on the microstructures, ferroelectric, piezoelectric, leakage current and mechanical properties of the NKBT-N100x (x = 0, 0.01, 0.03, 0.05) thin films have been investigated in detail. The NKBT-3N thin film has the largest remnant polarization (7 μC/cm2) and statistically averaged d 33eff (140 pm/V), the smallest leakage current, elasticity modulus (102.0 Gpa), hardness (5.1 Gpa) and residual stress (297.0 Mpa). The evaluation of residual stresses of these thin films will offer useful guidelines of safe working condition for their potential application in microelectromechanical system.  相似文献   

18.
Spin-coated CuxCo1?xFe2O4 (x = 0, 0.2, 0.4, 0.6, and 0.8) thin films were prepared on Pt/TiO2/SiO2/Si substrates. Pt/CuxCo1?xFe2O4/Pt structures were fabricated to investigate the effect of Cu doping concentration on the resistive switching behaviors. Structural and morphology characterizations revealed that Cu doping improved the crystallization of the thin films as compared to undoped CoFe2O4. Current–voltage characterization showed that all CuxCo1?xFe2O4 thin films showed unipolar resistance switching, but the distribution range of the set voltage, reset voltage, and resistances were much reduced by Cu doping. Clear improvement in the stability of these parameters started to appear with x = 0.4, and the optimized performance was observed in the Pt/Cu0.6Co0.4Fe2O4/Pt structure. The improved stability of the switching parameters was attributed to the enhancement of hopping process between the Fe ions and the Cu ions in the spinel lattice. Our results indicated that appropriate adjustment of the doping elements in oxides can be a feasible approach in achieving stable resistance switching memory devices.  相似文献   

19.
Wurtzite (Wz) and kesterite (Ks) phases of Cu2ZnSnS4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert-dodecanethiol (t-DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20?±?3 nm, width 17?±?2 nm) and sphere shaped NPs (13.4?±?0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks—t-DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm?3) and carrier concentration (2.64?×?1017) compared to kesterite phase of CZTS films.  相似文献   

20.
ZnO thin films were synthesized by a facile electrodeposition method in the aqueous solution. Porous ZnO thin films with wurtzite structure could be achieved by mean of annealing treatment. The growth mechanism of the porous ZnO thin film was discussed. The intensity of the E 2 mode in the ZnO thin film, which represents crystalline quality of the thin film increases with the increasing of annealing temperature. Optical properties indicate that annealing temperature has strong effect on the optical band gap value and defect concentrations. Both the green and yellow emissions corresponding to respective oxygen vacancies and oxygen interstitials can be identified. The results show that ZnO annealed at 400 °C exhibits a significant photocurrent density enhancement which is about 18 times larger than that of the as-deposited ZnO thin films. The mechanism of the enhanced photoresponse for the ZnO thin film has been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号