首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Zinc ferrite nanomaterials have been received significant attention in recent years on account of their potential applications in the fields of electronics, optoelectronics and magnetics. To enhance the magnetic properties of zinc ferrites, Nd-doped zinc ferrites (ZnFe2?xNdxO4, x?=?0, 0.01, 0.02, 0.03) nanoparticles (NPs) have been prepared by the sol–gel method. The effects of Nd doping concentration on the structural and magnetic properties of zinc ferrites were studied. The results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicated that the Nd ions were incorporated into the crystal lattice of ZnFe2O4 and substituted for the Fe3+ sites. Unlike pure zinc ferrites with paramagnetism, Nd doped ZnFe2O4 NPs were superparamagnetic at room temperature. Vibrating sample magnetometry results showed, with the increase of Nd content, the saturation magnetization of Nd doped ZnFe2O4 NPs increased.  相似文献   

2.
Spinel CoFe2O4 nanoparticles were synthesized by a simple, economical, and eco-friendly hydrothermal method (HM) using metal nitrates and polyvinyl pyrrolidone. The structural, morphological, and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL) spectroscopy, vibrating sample magnetometry (VSM), and Brunauer–Emmett–Teller (BET) surface area analysis. Key parameters influencing the structural performance, such as particle size and shape, annealing temperature, functionalization, and magnetic properties, have been comprehensively discussed. The effect of the catalyst and solvent on the catalytic oxidation of benzyl alcohol using the CoFe2O4 nanoparticle catalyst prepared by hydrothermal method was also investigated.  相似文献   

3.
In(OH)3 and In2O3 nanocrystals of rectangular shape and incorporating Au were synthesized with a hydrothermal process and thermal decomposition. Powder X-ray diffraction, electron microscopy (SEM, TEM), and energy-dispersive spectroscopy studies reveal that elemental Au nanoparticles are dispersed on the surface of In(OH)3 rectangular nanocrystals and incorporated into In2O3 nanoporous particles. UV–vis spectral measurements reveal a surface-enchanced plasma band near λ ~532 nm for both Au-incorporating nanomaterials. The BET surface areas of Au-incorporating In(OH)3 and In2O3 are 26.2 and 35.5 m2/g, respectively. The incorporation of elemental Au in In(OH)3 and In2O3 nanomaterials is attractive for sensor, catalyst and solar-cell applications.  相似文献   

4.
A novel palladium-based catalysts supported on Fe3O4/ZnO nanoparticles have been prepared by a simple method. The catalyst was characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrophotometry, FT-IR, and BET analysis. The catalyst afforded efficient synthesis of 2-oxazolines and benzoxazoles from aromatic nitriles under solvent-free conditions. The significant features of this method are short reaction times, good to high yields of the products, simple operation, solvent-free condition, non-toxicity, reusability of the catalyst without significant loss of catalytic activity, and using ultra small amount of Pd (0.004 g of catalyst contains 9.16 × 10?3 mmol Pd which was determined by ICP).  相似文献   

5.
Gd2O3/BiVO4 composite photocatalysts were hydrothermal synthesized and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV–vis diffusion reflectance spectra; all the composite photocatalysts exhibited enhanced photocatalytic activities than the pure BiVO4 for degradation of methyl orange under visible-light irradiation. The improved activity of composites was discussed and ascribed to the electron-scavenging effect of dopants.  相似文献   

6.
NiFe2O4 nanoparticles and nanorods were synthesized by a facile hydrothermal treatment of Ni(DS)2 (Nickel dodecyl sulfate), FeCl3, and NaOH aqueous solution at 120 °C. The products were characterized by powder X-ray diffraction, transmission electron microscopy, and selected area electron diffraction. The magnetic properties were evaluated using a vibrating sample magnetometer. The probable mechanism of the formation of NiFe2O4 nanoparticles and nanorods was discussed.  相似文献   

7.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

8.
Hollow CoFe2O4 spheres consisted of CoFe2O4 nanoparticles were synthesized by a facile solvothermal treatment of an ethylene glycol solution of FeCl3 · 6H2O, CoCl2 · 6H2O, and NaAc at 200 °C in the presence of polyethylene glycol and oleic acid. The products were characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, high-resolution transmission microscopy, scanning electron microscopy. The magnetic properties were evaluated using a vibrating sample magnetometer. The probable mechanism of the formation of Hollow CoFe2O4 spheres was discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Polypyrrole (PPY)/Co3O4 nanocomposites (NCs) were synthesized by a facile in situ polymerization of pyrrole in the presence of Co3O4 nanoparticles which were obtained by a rheological phase reaction method. The structure and morphology of the as-prepared PPY/Co3O4 NCs were investigated by X-ray diffraction, Fourier transform infrared spectra, Raman spectra, scanning electron microscopy and transmission electron microscopy, which confirmed the formation of the nanocomposites and indicated some interactions between PPY chains and Co3O4 nanoparticles. Different PPY/Co3O4 ratios were selected in order to study conductive properties. The electrical conductivity measurements indicated that ac conductivity tended to remain constant up to about 107 Hz for all samples, and thereafter increased with frequency. The desired electrical properties of PPY/Co3O4 NCs can be modulated simply by controlling the contents of Co3O4 nanoparticles.  相似文献   

10.
Ferrite nanoparticles (Fe3O4) have been produced by the direct low-pressure plasma-chemical synthesis. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), vibration magnetometry (VSM), and Mössbauer spectroscopy (NGR) were used for measurements, showing that the produced nanoparticles have an average size of 9.4 nm, a crystalline phase of magnetite, possess a property of superparamagnetism at room temperature, and have a blocking temperature of 89 K. The peculiarities of nanoparticle behavior in the magnetic field, related to a large specific surface area, are discussed.  相似文献   

11.
A quick and facile microwave method has been employed to prepare Mn3O4/worm-like mesoporous carbon (Mn3O4–MC) composites. Structural and morphological characterizations of worm-like mesoporous carbon and Mn3O4–MC composites have been carried out using X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, and electrochemical measurement. Cyclic voltammograms demonstrate that the Mn3O4–MC composites perform improved capacitive behavior at the range of −0.8~0.2 V (vs. Hg/HgO electrode) with reversibility. The Mn3O4–MC composite electrode possesses an enhanced specific capacitance of 266 F g−1 at a sweep rate of 1 mV s−1.  相似文献   

12.
Mn–Ni–Zn ferrite with the chemical formula of Mn0.2Ni0.3Zn0.5Fe2O4 was prepared by co-precipitation method. The X-ray diffraction (XRD) results show that the prepared sample crystallizes in the cubic spinel structure with the space group of Fm3m. The morphological analysis of the sample was investigated by scanning electron microscopy (SEM). The dielectric properties of Mn0.2Ni0.3Zn0.5Fe2O4 ferrite were studied in a frequency range from 20 Hz to 10 MHz and at a temperature range from 293 to 733 K. The dielectric constant decreases with the increasing frequency for all the temperature values chosen. The AC conductivity mechanism was found the small polaron type of conductivity, and in addition to that, the DC conductivity can be explained by Arrhenius type conductivity. According to the dielectric results, relaxation process fits Cole–Cole model. Finally, the effect of the relative humidity upon the impedance of the sample was discussed for a frequency range between 20 Hz and 10 MHz. It is found that the impedance values decrease almost linearly with the increasing % RH (relative humidity) values at low frequencies, while the impedance of the sample is independent of % RH at high frequencies.  相似文献   

13.
The ultraviolet (UV)-emitting Sr3P4O13:Ce3+ phosphors were synthesized via the solid-state reaction method, and their structural, morphological and luminescence properties were characterized by X-ray diffraction analysis, scanning electron microscopy, photoluminescence spectroscopy. The obtained results indicate that these phosphors can be effectively excited by short-wavelength ultraviolet (<300 nm), and exhibit long-wavelength ultraviolet (300–380 nm) emission with nanosecond-level fluorescence lifetime corresponding to the parity-allowed 5d–4f transitions of Ce3+. The concentration-quenching phenomenon of Ce3+ in Sr3P4O13 host was also studied, in which the critical energy transfer distance between Ce3+ ions and concentration quenching mechanism were determined.  相似文献   

14.
XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−x Mn5/3+x O4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−x Mn5/3+x O4.  相似文献   

15.
A facile and efficient approach for the fabrication of Fe3O4@TiO2 nanospheres with a good core–shell structure has been demonstrated. Products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The results showed that Fe3O4@TiO2 nanocomposites exhibited high degree of crystallinity, excellent magnetic properties at room temperature. Furthermore, the as-prepared Fe3O4@TiO2 nanocomposites exhibited good photocatalytic activity toward the degradation of Rhodamine B (RhB) solution. Additionally, the recycling experiment of Fe3O4@TiO2 nanocomposites had been done, demonstrating that Fe3O4@TiO2 nanocomposites have high efficiency and stability.  相似文献   

16.
BiVO4/TiO2 nanocomposites were fabricated by a facile wet-chemical process, followed by the synthesis of TiO2 hierarchical spheres via hydrothermal method. The BiVO4/TiO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results showed that prepared TiO2 presented hierarchical spherical morphology self-assembled by nanoparticles and an anatase–brookite mixed crystal phase. The introduction of monoclinic BiVO4 components retained the hierarchical structures and expanded the light response to around 510 nm. Type II BiVO4/TiO2 heterostructured nanocomposites exhibited improved photocatalytic degradation towards methylene blue under visible-light irradiation, especially for the composite photocatalysts with atomic Ti/Bi?=?10, which showed double degradation rate than that of pure BiVO4. The enhanced photocatalytic mechanism of the heterostructured BiVO4/TiO2 nanocomposites was discussed as well.  相似文献   

17.
In this experimental work, different conductive polymer nanocomposites were synthesized using polypyrrole as conductive polymer and CoFe2O4, NiFe2O4, CNT and graphene as fillers. X-ray diffraction pattern was used to study the crystallinity of the products and it was found CoFe2O4, NiFe2O4, CNT, and graphene were successfully embedded in the polymer matrix. To further approve the synthesis of the nanocomposites, energy dispersive X-ray spectroscopy was served. Surface groups of the synthesized nanocomposites were studied by Fourier transform infrared and Raman spectroscopy. The morphology of the products was examined by scanning electron microscopy and transmission electron microscopy. It was found the fillers were successfully embedded in the polymer matrix and they were in nanometer scales. To investigate the magnetic properties and conductivity of the polymer nanocomposites, alternating gradient force magnetometer and four-point probe were used, respectively. Finally, the microwave absorption properties of the polymer nanocomposites were studied and it was found the fillers have different effects on the polymer microwave absorption value.  相似文献   

18.
In the current study, SiO2/Fe3O4 core–shell nanoparticles functionalized with TiO2, using a simple method and application for removal of Cd(II), Hg(II) and Ni(II) ions from aqueous solution. The structure of the resulting product was confirmed by X-ray diffraction spectrometry, transmission electron microscopy (TEM), pHpzc and Brunauer, Emmett and Teller methods. The average diameter of TiO2/SiO2/Fe3O4 nanoparticles according to TEM was obtained around 48 nm. In batch tests, the effects of pH, initial metal concentration, contact time and temperature were studied. Adsorption of metal ions was studied from both kinetics and equilibrium point of view. Maximum adsorption capacity of Cd(II), Hg(II) and Ni(II) on TiO2/SiO2/Fe3O4 nanoparticles was 670.9, 745.6 and 563.0 mg g?1, respectively. Adsorption–desorption results showed that the reusability of nanoparticles was encouraging. This adsorbent was successfully applied to removal Cd(II), Hg(II) and Ni(II) ions in real samples including tap water, electronic wastewater and medical wastewater.  相似文献   

19.
Nano-ferrite of the general formula Mg0.7Cu0.3Fe2O4 was prepared by citrate-gel auto combustion method. The structure was studied by X-ray diffraction, Brunauer–Emmet–Teller, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy analyses. The crystallite size of the investigated nano ferrite was ?39 nm. The magnetic hysteresis measurements at different temperatures (100, 170, 240, and 300 K) were performed using a vibrating sample magnetometer. A correlation between magnetic behavior and lattice strain has been established. Arrott plot has been employed to understand the magnetic behavior of nano-crystalline Mg0.7Cu0.3Fe2O4. The magnetic susceptibility was carried out using Faraday’s method. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, and coercivity were obtained and reported. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range from (1.3–1.9 eV), hence the investigated samples could act as visible light driven photo catalysts.  相似文献   

20.
Mn3O4 nanoparticles were in-situ synthesized in the 3D framework of reduced graphene oxide (RGO) by a facile one-step hydrothermal method. In the reduced graphene-Mn3O4 (RGM) composite, the RGO network not only serves as a mechanical support to construct a self-supported and binder-free electrode, but also offers 3D continuous conductive network for effective electron transfer. The Mn3O4 nanoparticles anchored uniformly across the RGO framework, which provided high capacity and prevented the restacking of the RGO thin sheets. Based on the unique composite structures, strong synergistic effect was achieved between Mn3O4 and RGO, resulting in superior specific capacity, enhanced rate capability, stable cycling performance and nearly 100% Coulombic efficiency in the RGM2 composites. With an optimal Mn3O4 composition of 44% by weight (similarly hereinafter), the composite exhibits high specific capacities of 696–795 mAh g1 based on the overall weight of the electrode in 60 cycles at 200 mA g?1, with a large coulombic efficiency of around 98%. Even at a high current density of 10,000 mA g?1, the composite can still deliver a capacity of 383 mAh g?1, demonstrating its excellent rate performance. The outstanding performances of the composites are attributed to the synergistic effect of both components and the hierarchical structure of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号