首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometric V-doped particles with vanadium concentration varying from 0 to 10% were prepared using the polyol method. The influence of the doping on the textural, structural and optical properties was studied by various methods of characterization. X-ray diffraction (XRD) patterns disclose that nanocrystallites of cassiterite, i.e. rutile-like tetragonal structure SnO2 and the absence of a new vanadium phase in the XRD pattern in the different concentration of doping were formed after annealing, the ordinary crystallite size decreased from 20.6 to 12.3 when the doping concentration increased from 0 to 10%, respectively. Moreover, the N2 sorption porosimetry and transmission electron microscopic show that all samples synthesized were constituted of an aggregated network of almost spherical nanoparticles, which sizes changed with the altitude in the doping concentration to 10%. In accordance with UV–visible absorption measurements, this diminution of nanoparticles sizes was followed by a decrease in the band gap value from 3.25 eV, for undoped SnO2, to 2.75 eV, for SnO2 doped at 10%. On the other part, the photocatalytic activity of undoped and V-doped SnO2 nanoparticles was studied using methylene blue (MB) as model organic pollutants. The SnO2 nanoparticles doped at 10% of vanadium disclosed that the discoloration of MB reached 97.4% after irradiation of 120 min, with an apparent constant rate of the degradation reaching 0.035 min?1 for MB degradation that was about 2.5 times more than that of pure SnO2 (0.014 min?1).  相似文献   

2.
We report effect of oxygen vacancies on band gap narrowing, enhancement in electrical conductivity and room temperature ferromagnetism of SnO2 nanoparticles synthesized by simple chemical precipitation approach. As the calcination temperature is elevated from 400 to 800 °C, the average particle size increases from 12.26 to 34.43 nm, with enhanced grain growth and crystalline quality. At low temperatures, these nanoparticles are in a rather oxygen-poor state revealing the presence of many O vacancies and Sn interstitials in SnO2 nanoparticles as in this case Sn+2 is not oxidized completely to Sn+4 and small sized nano particles have more specific surface area, hence defects are more prominent. The oxygen content increases steadily with increasing temperature, with the Sn:O atomic ratio very near to the stoichiometric value of 1:2 at high temperatures suggesting the low density of defects. The optical band gap energies of all SnO2 nanoparticles are in the visible light region, decreasing from 2.89 to 1.35 eV, while room temperature ferromagnetism and electrical conductivity are enhanced with reduced temperatures. The dielectric constant (εr) exhibited dispersion behaviour and the Debye’s relaxation peaks were observed in tanδ. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell–Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+4. The narrowed band gap energies and enhanced ferromagnetism are mainly attributed to the increase of defects density (e.g., oxygen vacancies). The presence of oxygen vacancies is confirmed by EDX, Raman, PL, XPS, and UV–Vis spectra. The band gap of 1.35 eV is the smallest value for SnO2 reported so far. This rather small band gap, enhanced conductivity and room temperature ferromagnetism demonstrate that SnO2 nanoparticles are very promising in the visible light photo catalysis and optoelectronic devices.  相似文献   

3.
Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 °C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm?1 has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zni). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g?1 even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.  相似文献   

4.
This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Mn2+ ions on their structural, optical and magnetic properties. Samples of Sn1?xMnxO2 with x?=?0.01, 0.02, 0.03 and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10–16 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier Transform Infrared Spectroscopy studies. Optical studies were carried by UV–Vis Spectroscopy and Fluorescence Spectroscopy. Electron Paramagnetic resonance was used to calculate the Lande splitting factor ‘g’. The magnetic properties were using Vibrating Sample Magnetometer. SnO2 with lower Mn doping shows ferromagnetism.  相似文献   

5.
Sn4+ and La3+ co-doped TiO2 photocatalytic material with nanoparticle structure have been successfully prepared using SnCl2·2H2O and La(NO3)3·6H2O as precursors. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy and UV–visible spectroscopy have been used to for the characterization of the morphology, crystal structure, particle size and optical properties of the samples. The photocatalytic properties of sample with various amount of La doped TiO2 have been studied by photo degradation of methyl orange (MO) in water under visible light. XRD patterns showed both rutile and anatase phases for 5 mol% of Sn and 5–10 mol% of La. But anatase phase with a little rutile phase was formed for 5 mol%Sn and 10 mol%La. The prepared Sn and La co doped TiO2 photo-catalyst showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of MO solution under visible irradiation. Antibacterial behavior towards E. coli was then studied under visible irradiation. The synthesized T-5%Sn-10%La powder exhibited superior antibacterial activity under visible irradiation compared to the pure TiO2.  相似文献   

6.
In this work, the dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles were studied using ac impedance spectroscopy and magnetic properties measurement system or quantum design superconducting quantum interference device. Results showed that dielectric constant (ε r ), dielectric loss (ε″), and ac electrical conductivity (σ AC ) are strongly frequency dependent. A decrease in frequency was accompanied with an increase in ε r and ε″ values, whereas, a decrease in the dielectric constant was observed with the increase of Ni co-doping concentration. It was found that the dielectric constant and dielectric loss values decrease, whilst AC electrical conductivity increases with increase in co-doping concentration. Magnetization measurements revealed that the Ni co-doped SnO2 samples exhibits room temperature ferromagnetism. The results illustrate that (Co, Ni) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those of co-doped samples reported previously, indicating that these (Co, Ni) co-doped SnO2 materials can be suitable for the purpose of high frequency device and spintronic applications.  相似文献   

7.
Sm3+-doped magnetite (Fe3O4) nanoparticles were synthesized through a one-pot facile electrochemical method. In this method, products were electrodeposited on a stainless steel (316L) cathode from an additive-free 0.005 M Fe(NO3)3/FeCl2/SmCl3 aqueous electrolyte. The structural characterizations through X-ray diffraction, field-emission electron microscopy, and energy-dispersive X-ray indicated that the deposited material has Sm3+-doped magnetite particles with average size of 20 nm. Magnetic analysis by VSM revealed the superparamagnetic nature of the prepared nanoparticles (Ms = 41.89 emu g?1, Mr = 0.12 emu g?1, and H Ci = 2.24 G). The supercapacitive capability evaluation of the prepared magnetite nanoparticles through cyclic voltammetry and galvanostat charge–discharge showed that these materials are capable to deliver specific capacitances as high as 207 F g?1 (at 0.5 A g?1) and 145 F g?1 (at 2 A g?1), and capacity retentions of 94.5 and 84.6% after 2000 cycling at 0.5 and 1 A g?1, respectively. The results proved the suitability of the electrosynthesized nanoparticles for use in supercapacitors. Furthermore, this work provides a facile electrochemical route for the synthesis of lanthanide-doped magnetite nanoparticles.  相似文献   

8.
SnO2 semiconductor is a new-typed promising photocatalyst, but wide application of SnO2-based photocatalytic technology has been restricted by low visible light utilization efficiency and rapid recombination of photogenerated electrons–holes. To overcome these drawbacks, we prepared B/Fe codoped SnO2–ZnO thin films on glass substrates through a simple sol–gel method. The photocatalytic activities of the films were evaluated by degradation of organic pollutants including acid naphthol red (ANR) and formaldehyde. UV–Vis absorption spectroscopy and photoluminescence (PL) spectra results revealed that the B/Fe codoped SnO2–ZnO film not only enhanced optical absorption properties but also improved lifetime of the charge carriers. X-ray diffraction (XRD) results indicated that the nanocrystalline SnO2 was a single crystal type of rutile. Field emission scanning electron microscopy (FE-SEM) results showed that the B/Fe codoped SnO2–ZnO film without cracks was composed of smaller nanoparticles or aggregates compared to pure SnO2 film. Brunauer–Emmett–Teller (BET) surface area results showed that the specific surface area of the B/Fe codoped SnO2–ZnO was 85.2 m2 g?1, while that of the pure SnO2 was 20.7 m2 g?1. Experimental results exhibited that the B/Fe codoped SnO2–ZnO film had the best photocatalytic activity compared to a pure SnO2 or singly-modified SnO2 film.  相似文献   

9.
The ZnO, Zn0.96Mn0.04O, Zn0.95Mn0.04Co0.01O, Zn0.94Mn0.04Co0.02O and Zn0.92Mn0.04Co0.04O nanoparticles were synthesized by simple chemical precipitation technique. The effects of co-doping on the structure and magnetic properties of these nanoparticles were studied. The X-rays diffraction (XRD) scans were performed in the 2θ range of 20°–80°. The XRD patterns, at 300 K, of all the pure and co-doped ZnO samples confirmed the formation of wurtzite-type structure. X-ray diffraction and transmission scanning electron microscope analysis indicated that the high spin Co2+ and Mn2+ ions were substituted for the Zn2+ ions at tetrahedral sites. The average size of the nanoparticles were increased from 17 to 24 nm with the increase of dopants concentration. Moreover, Energy Dispersive X-ray spectroscopy (EDX) confirmed the synthesis results. All Zn0.96?xMn0.04Co x O (x?=?0.0, 0.1, 0.2 and 0.4) nanoparticles samples were observed to be paramagnetic below 300 K. However, a large increase in the magnetization was observed below 40 K. This behavior, along with the negative value of the Curie–Weiss constant obtained from the linear fit to the susceptibility data below room temperature, indicated the ferromagnetic nature of the samples. The origin of ferromagnetism is likely to be the intrinsic characteristics of the Co and Mn doped samples. The high magnetization was noted for the 1 wt% Co co-doped Mn–ZnO annealed samples as compared to other samples with Co concentration above and below this threshold concentration.  相似文献   

10.
We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30?±?0.73 nm to 16.71?±?012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489)?×?10?2 and (0.12 to 0.27)?×?10?2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.  相似文献   

11.
The multiferroic Bi0.9Ca0.1FeO3, Bi0.9Ca0.1Fe0.9Co0.1O3, Bi0.9Ca0.1Fe0.9Ni0.1O3, Bi0.9Ca0.1Fe0.9Cu0.1O3 samples were prepared by a simple sol–gel method. Rietveld refinement of X-ray diffraction data and Raman spectra reflect a structural phase transition from single phase (rhombohedral, pure BiFeO3) to two phase coexistence (rhombohedral R3c and cubic Fm-3 m). The structural distortion of Bi0.9Ca0.1Fe0.9Ni0.1O3 is very marked. SEM images show the co-doped nanoparticles having an average size of 50 nm. A contribution from the leakage current have been observed in the P–E loops. XPS results reveal that the concentration of Fe2+ and oxygen vacancy decreased after transition metal elements (Co, Ni, Cu) doped into Bi0.9Ca0.1FeO3. Moreover Co, Ni doping can enhance the saturation magnetization, while Cu doping can enhance the coercive field in Bi0.9Ca0.1FeO3.  相似文献   

12.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

13.
Sodium co-doped Zn0.95Co0.05O nanoparticles (0.01 ≤ X ≤ 0.05) were synthesized using simple wet chemical (co-precipitation) method. The structural, surface morphology and the optical properties of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscope, UV-diffuse reflectance spectroscopy (UV-DRS) and Photoluminescence (PL) spectra measurements. The magnetic measurements of the prepared samples with vibrating sample magnetometer exhibited room temperature ferromagnetism. The results obtained from the above studies shows no trend following on Na co-doping concentrations, within our arbitrary selection limit of Na ion. However, the XRD pattern confirms the single phase of Na co-doped samples without any secondary phases. The behaviors associated with intrinsic defects are explored by UV-DRS and PL emission spectra. Further, the origin of observed ferromagnetism and its lack of dependence on Na ion doping was analysed and reported.  相似文献   

14.
Metals and metal oxide nanoparticles clay supported composites arouse much interest in recent time. In this communication, we report the insitu synthesis of SnO2 nanoparticles by impregnation of SnCl2.2H2O into the nanopores of modified Montmorillonite followed by polyol reduction and aerial oxidation. The modified Montmorillonite having nanopores act as a ‘Host’ for the SnO2 nanoparticles. The TEM study reveals that SnO2 nanoparticles having size <10 nm are evenly distributed on the support. The XPS results show that the binding energy peaks at 490 and 498.2 eV are due to Sn3d5/2 and Sn3d3/2 respectively indicating the presence of Sn4+ in the SnO2 nanoparticles. Elemental dot mapping indicate the presence of Al, Si, O and Sn on the surface of AT-Mont. supported SnO2 nanoparticle. The synthesized SnO2 nanoparticles show antibacterial activity against gram +ve and gram ?ve bacterial strains.  相似文献   

15.
Effect of additional Zn2+ dopant on the ferromagnetism (FM) of Co doped CeO2 nanoparticles was studied. The Zn and Co co-doped CeO2 nanoparticles (Ce0.97?xZn x Co0.03O2: where x?=?0, 0.01, 0.03, 0.05) were prepared by sol–gel technique. The crystal structure, morphology, and magnetic properties were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy (Raman) and physical property measurement system (PPMS). XRD and Raman studied showed that certain amount of Zn2+ can readily be incorporated into the lattice of Co doped CeO2 with single-phase of CeO2 original cubic fluorite crystal structure, and no ferromagnetic secondary phase was observed. SEM images show Zn and Co co-doped CeO2 nanoparticles were spherical and uniform size. The PPMS studied indicate that the room-temperature FM of Co doped CeO2 nanoparticles increase with additional Zn2+ dopant. This result is helpful in understanding the origin of FM in diluted magnetic oxides (DMO) as well as improving the magnetic property of DMO.  相似文献   

16.
A series of single-phase Sr3YNa(PO4)3F:Dy3+ phosphors were successfully synthesized via a conventional solid state reaction process. The powder X-ray diffraction patterns were utilized to confirm the phase composite and crystal structure. The phosphor could be excited by the ultraviolet visible light in the region from 300 to 420 nm, and it shown two dominant emission bands peaking at 484 nm (blue light) and 580 nm (yellow light) which originated from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimum dopant concentration of Dy3+ ions was confirmed to be 7 mol% in Sr3YNa(PO4)3F:Dy3+ system and the concentration quenching mechanism is dipole–dipole interaction. The lifetime values of Dy3+ ions at different concentrations (x?=?0.03, 0.05, 0.07, 0.09 and 0.11) were determined to be about 0.855, 0.759, 0.686, 0.606 and 0.546 ms, respectively. The thermal stability of luminescence of Sr3YNa(PO4)3F:0.07Dy3+ phosphor was also investigated and the activated energy was deduced to be 0.228 eV, which shows good thermal stability. The chromaticity coordinates fall in the white-light region calculated by the emission spectrum. These results show that Sr3YNa(PO4)3F:Dy3+ phosphor can be a promising white emitting phosphor for white LEDs.  相似文献   

17.
Tm3+ /Dy3+ co-doped LiYF4 single crystals were synthesized by using vertical Bridgman method in sealed Pt crucibles. When excited by a proper UV-light, the crystals show blue emission band centered at 485 nm, which overlaps between the transition of Tm3+ (1G4 → 3H6) and Dy3+ (4F9/2 → 6H15/2) ions, and yellow band of 573 nm ascribed to Dy3+ (4F9/2 → 6H13/2) ions. Both chromaticity coordinates and photoluminescence intensity vary with the excitation wavelengths and the concentration of rare earth dopants. A white light can be achieved from Tm3+ (0.6 mol%), Dy3+ (2.25 mol%) co-doped LiYF4 crystal with chromaticity coordinates of x ≈ 0.2836, y ≈ 0.3229, and color temperature T c = 8419 K by the excitation of a 350 nm light. It indicates that this crystal can be a potential candidate for the UV-light excited white-light emitting diodes.  相似文献   

18.
The Sm3+, Dy3+ doped and Sm3+/Dy3+ co-doped NaLa(MoO4)2 spherical phosphors were hydrothermally synthesized by the EDTA-2Na mediated method. Under the excitation of 297 nm, the quenching concentration of Sm3+ in NaLa(MoO4)2 host was determined to be 13%, and the concentration quenching mechanism was discussed to be the electric quadrupole–quadrupole interaction. After Sm3+ and Dy3+ ions were co-doped into the NaLa(MoO4)2 host, the energy transfer behaviors resulted from Dy3+ to Sm3+ ions were investigated by the help of the luminescent spectra of the obtained phosphors. By varying co-doping concentrations of Sm3+/Dy3+ ions, the emission color of NaLa(MoO4)2:Sm3+/Dy3+ can be tuned from reddish-orange, pink and white to bluish-green. The CIE chromaticity coordinate, the correlated color temperature and the quantum efficiency of NaLa0.87(MoO4)2:1%Sm3+, 12%Dy3+ were calculated to be (0.356, 0.320), 4353 K and 20%, respectively. Furthermore, in the temperature-dependent analysis, it presented good thermal stability, which can become a promising single-phased white-emitting phosphor for white LEDs devices. Based on these results, the possible energy transfer mechanism between Dy3+ and Sm3+ in NaLa(MoO4)2:Sm3+/Dy3+ was also proposed.  相似文献   

19.
This paper reports the comparison of photoluminescence and afterglow behavior of Dy3+ in CaSnO3 and Ca2SnO4 phosphors. The samples containing CaSnO3 and Ca2SnO4 were prepared via solid-state reaction. The properties have been characterized and analyzed by utilizing X-ray diffraction (XRD), photoluminescence spectroscope (PLS), X-ray photoelectron spectroscopy (XPS), afterglow spectroscopy (AS) and thermal luminescence spectroscope (TLS). The emission spectra revealed that CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed different photoluminescence. The Ca2SnO4:Dy3+ phosphor showed a typical 4F9/2 to 6Hj energy transition of Dy3+ ions, with three significant emissions centering around 482, 572 and 670 nm. However, the CaSnO3:Dy3+ phosphor revealed a broad T1 → S0 transitions of Sn2+ ions. The XPS demonstrate the existence of Sn2+ ions in CaSnO3 phosphor caused by the doping of Dy3+ ions. Both the CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed a typical triple-exponential afterglow when the UV source switched off. Thermal simulated luminescence study indicated that the persistent afterglow of CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors was generated by the suitable electron or hole traps which were resulted from the doping the calcium stannate host with rare-earth ions (Dy3+).  相似文献   

20.
The synthesis and characterization of SnO2 nanomaterials have been extensively studied as photoelectrodes for the potential applications in optoelectronic devices. In this work, SnO2 nanorods arrays have been synthesized by hydrothermal method on the nanoporous surface of the anodized stainless steel. The prepared SnO2 nanorods of 1.3–1.4 µm in length and 250–350 nm in width, were uniformly distributed on the anodized stainless steel. This one-dimensional SnO2 nanostructure directly fabricated on the substrate provides an electron transfer pathway and a Schottky-type contact, resulting in improved photocatalytic and photoelectrochemical performance. The SnO2 nanorods arrays exhibit fast response towards H2O2 determination, producing a linear range from 100 to 3000 μM with a correlation coefficient of 0.984 and a sensitivity of 0.66 μA cm?2 mM?1. The results indicate the potential applications of SnO2 nanorods arrays as the non-enzymatic H2O2 sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号