首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancing the critical temperature (T C ) is important not only to widen the practical applications but also to expand the theories of superconductivity. Inspired by the meta-material structure, we designed a smart meta-superconductor consisting of MgB2 microparticles and Y2O3/Eu3+ nanorods. In the local electric field, Y2O3/Eu3+ nanorods generate an electroluminescence (EL) that can excite MgB2 particles, thereby improving the T C by strengthening the electron–phonon interaction. An MgB2-based superconductor doped with one of four dopants of different EL intensities was prepared by an ex situ process. Results showed that the T C of MgB2 doped with 2 wt% Y2O3, which is not an EL material, is 33.1 K. However, replacing Y2O3 with Y2O3/Eu3+II, which displays a strong EL intensity, can improve the T C by 2.8 to 35.9 K, which is even higher than that of pure MgB2. The significant increment in T C results from the EL exciting effect. Apart from EL intensity, the micromorphology and degree of dispersion of the dopants also affected the T C . This smart meta-superconductor provides a new method to increase T C .  相似文献   

2.
3.
Samples of MgB2 pure phase, with Ni nanoparticles addition, were prepared using a solid diffusion reaction method. Clearly, the Ni nanoparticles act as effective pinning centers and enhance the critical current density values, especially for a sample with 0.5%Ni. A negligible amount of Ni diffuses inside the MgB2 grains, thus having a small effect on the transition temperature, which remains around 37.5 K.  相似文献   

4.
Barium strontium gadolinium bismuth niobate (Ba0.1Sr0.81Gd0.06Bi2Nb2O9, BSGBN) ceramics were prepared by using the conventional solid-state reaction method. The dielectric permittivity, modulus and impedance spectroscopy studies on BSGBN were investigated in the frequency range, 45 Hz–5 MHz and in the temperature range from room temperature (RT) to 570 °C. The dielectric anomaly with a broad peak was observed at 470 °C. Simultaneous substitution of Ba2+ and Gd3+ increases the transition temperature of SrBi2Nb2O9 (SBN) from 392 to 470 °C. XRD studies in BSGBN revealed an orthorhombic structure with lattice parameters a = 5.4959 Å, b/a = 1.000, c = 25.0954 Å. Impedance and modulus plots were used as tools to analyse the sample behaviour as a function of frequency. Cole-Cole plots showed a non-Debye relaxation. Also, dc and ac conductivity measurements were performed on BSGBN. The electric impedance which describes the dielectric relaxation behaviour is fitted to the Kohlrausch exponential function. Near the phase transition temperature, a stretched exponential parameter β indicating the degree of distribution of the relaxation time has a small value.  相似文献   

5.
We have studied the effect of codoping with CeO2 and SnO2 (2 to 3.5 wt %) on the microstructure and dielectric properties of BaTiO3. Doping with CeO2 and SnO2 inhibits grain growth in BaTiO3 and enables the fabrication of ceramic materials with a grain size below 1 μm. The temperature coefficient of permittivity of the ceramics increases with CeO2 + SnO2 content, firing temperature, and firing time.  相似文献   

6.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

7.
An original two-stage liquid-phase hot explosive compaction (HEC) procedure of Mg-B precursors above 900 °C provides the formation of superconductivity MgB2 phase in the whole volume of billets with maximal T c = 38.5 K without any further sintering. The liquid-phase HEC strongly increases the solid-state reaction rate similar to photostimulation, but in this case, due to the high penetrating capability of shock waves in a whole volume of cylindrical billets and consolidation of MgB2 precursors near to theoretical density allows one to produce bulk, long-body cylindrical samples important for a number practical applications.  相似文献   

8.
We report fluctuation-induced conductivity (FIC) of the polycrystalline MgB2 superconductor in the presence of magnetic field. The results are described in terms of the temperature derivative of the resistivity, dρ/dT. The dρ/dT peak temperature observed for H = 0 Tesla at 39 K remains very distinct under applied fields of 6 Tesla and 8 Tesla at 22 and 20 K respectively. Aslamazov and Larkin (AL) equations are used to explain the anisotropic nature of the polycrystalline MgB2. The effective coherence length, ξ p (0) determined experimentally is 55.17 Å, which roughly matches with previously reported experimental work.  相似文献   

9.
Bulk materials of MgB2 have been prepared with the stoichiometry of MgB2(Al2O3) x (x = 0, 2, 5, 10 and 20% nano-Al2O3 powders), by using solid-state reaction route. All samples were sintered at 750 °C for 30 min in a calorimeter to monitor the sintering reaction process. It is found that the onset temperatures of reaction between Mg and B powders increase significantly with increasing the amount of Al2O3. However, the reaction time is shortened for the nano-Al2O3 powders can effectively activate the reaction as a catalyst. The critical transition temperature decreases from 38.5 to 31.6 K, and the corresponding temperature window becomes narrow (less than 2.6 K). Furthermore, the amount of MgO impurity was found to increase with the increase of Al2O3, which probably indicates that partial Mg was replaced by Al.  相似文献   

10.
High-density (92–98 % of the theoretical density) MgB 2 samples added with Sb 2 O 5 ((MgB 2)+ (Sb 2 O 5) x ,x= 0, 0.0025, 0.005, 0.015) were obtained by Spark Plasma Sintering. A higher amount of additive decreases density. In added samples, grains of secondary phases are located at MgB 2 grain boundaries and they are of large size. Hence, Sb 2 O 5 does not promote effective flux pinning, connectivity is lower, and this suppresses the critical current density and the irreversibility field. Pinning force-related parameters indicate that added samples are close to the point pinning region and they show a higher grain boundary pinning contribution when compared with pristine MgB 2 sample and when temperature is lower. It is speculated that for fixed processing conditions and Sb-oxide phases, a lower stability of the additive, reflected by a lower melting temperature, may promote reactive processes to start earlier leading to coarsening of the grains belonging to secondary phases.  相似文献   

11.
Superconducting bulks of MgB2 with addition of Sb2O3 and Sb with different stoichiometric compositions ((MgB2) + (Sb2O3) x , x = 0.0025, 0.005, 0.015, and (MgB2) + (Sb)y, y = 0.01) were obtained by the Spark Plasma Sintering (SPS) technique. All added samples have high density, above 95% and critical temperature, T c, of 38.1–38.6 K. This result and XRD data suggest that Sb does not enter the lattice of MgB2. Impurity phases are Mg3Sb2, MgO, and MgB4. The optimum addition is Sb2O3 for x = 0.005. This sample shows the critical current density, J c(5 K, 0 T) = 4 × 105 A/cm2 and J c(5 K, 7 T) = 6 × 102 A/cm2, while the irreversibility field, H irr (5 K, 100 A/cm2) = 8.23 T. Indicated values of J c and H irr are higher than for the pristine sample. The mechanism of J c and H irr increase in the Sb2O3 added samples is complex and composed of opposite effects most probably involving morphology elements, the presence of nano metric MgB4 and the indirect influence of oxygen or oxygen and Sb. Crystallite size of MgB2 is decreasing when Sb-based additions are introduced and the effect is stronger for the Sb-metal addition. The sample with Sb-metal addition does not improve J c and H irr when compared with pristine sample.  相似文献   

12.
MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3.T c (R = 0) is 38.2-38.5 K with ΔT C of 0.6–1.0 K. Comparative studies of various methods of low pressure synthesis have been presented.  相似文献   

13.
14.
Ceramic samples based on ZnTa2O6 and ZnTa2O6–MO2 (M = Ti, Zr) systems have been obtained by the solid state ceramic route. The phase composition and microstructure of samples were investigated. The effect of the aliovalent substitution of ions Zn2+ and Ta5+ by M4+ (M = Ti, Zr) in the structure of ZnTa2O6 on microwave dielectric properties of ceramics was studied. The way of the compensation of the positive temperature coefficient of resonant frequency of dielectric resonators based on ZnTa2O6 ceramics with using the aliovalent substitution of cations was proposed. Dielectric resonators with the high temperature stability of the resonant frequency and high dielectric properties in the microwave range based on the ZnTa2O6–ZrO2 system were obtained for application in electronics.  相似文献   

15.
The iron (Fe) diffusion in superconducting MgB2 bulk samples has been studied for sintering time durations of 15 min, 30 min, 1 h, 2 h, and 4 h at 900°C. Fe coating bulk polycrstalline superconducting MgB2 samples for Fe coating were prepared by pelletizing and used in the diffusion experiments with initial sintering at 800°C for 1 h. A thin layer of Fe was coated on MgB2 pellets by evaporation in vacuum. Effects of Fe diffusion on the structural, electrical, and superconducting properties of MgB2 have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), energy-dispersive X-ray spectroscopy (EDS), and resistivity measurements. Fe diffused samples have slightly increased critical transition temperatures and have larger lattice parameter c values, in comparison with bare samples. Fe diffusion coefficients were calculated from depth profiles of c parameter and room temperature resistivity values. Depth profiles were obtained by successive removal of thin layers from Fe diffused surfaces of the samples. Our results have shown that the Fe diffusion coefficient decreases with increasing sintering time and resistivity measurements can be utilized for determination of diffusion coefficient.  相似文献   

16.
A series of polycrystalline Al doped Mg1−x Al x B2 (x=0.00, 0.01, 0.03, 0.06, 0.10, 0.15) samples were prepared using the solid-state reaction route. Phase analysis showed that Al is alloyed into the MgB2 lattice and there were some Al2O3, MgAlB4 particles present in bulk samples of MgB2. It is shown that the suppression of T c by doping originates largely from structural changes and the structure properties play an important role in influencing the normal-superconductor transport. The introduction of defects into the Mg layers and other aluminum compound (Al2O3, MgAlB4) impurity phases both influence the polycrystalline structure.  相似文献   

17.
Bulk (Mg1.02B2)1−x Sn x samples (x = 0.0, 0.01, 0.03 and 0.05) were synthesized by in situ sintering at 850 °C for one hour. Based on the phase identification and microstructure observation, the Mg2Sn and Sn impurities are found as the main impurities in Sn-doped samples. According to the magnetization measurements, the low doping level of Sn was observed to have small influence on the grain connectivity, and thus a high critical current density was maintained at low field. However, the values of the critical current density at high field in the Sn-doped samples show a little decrease.  相似文献   

18.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

19.
Both pure and nano-SiC doped MgB2 bulk samples were prepared by a rapid process. The effects of fast heating-up and doping on the critical current densities were studied. All samples were examined using XRD, SEM and magnetization measurement. Both pure and doped samples show higher critical current densities and irreversible field H irr compared with samples sintered at the same temperature by a slow process. Experimental results manifest that fast heating-up is effective in reducing the grain size. This rapid process may be preferable to avoid grain size enlarging when element substitution can be achieved only at relatively high temperatures.  相似文献   

20.
Magnesium oxide (MgO) whiskers (with diameters of about 60–80 nm) formed on the surface of bulk polycrystalline MgB2 superconductor at a relative low temperature (720 °C) during in situ sintering process. The reaction between Mg and B powders begins at a temperature below melting point of Mg and maintains till about 750 °C. The residual Mg powders evaporate and react with trace oxygen to form MgO vapor as the temperature exceeds the melting temperature of Mg and a low supersaturation is required for the growth of MgO whiskers. The preformed MgB2 and MgO crystals act as substrates and the melted Mg powders on the surface of them serve as catalysts during the growth process of MgO whiskers. The growth process of MgO whiskers is dominated by a self-catalytic vapor–liquid–solid (VLS) mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号