首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap ‘Eg’ for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 107 Ω cm.  相似文献   

2.
ZnSe layers have been grown by a low temperature (65 °C) electrochemical deposition technique in an aqueous medium. The resulting thin films have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive analysis by X-rays (EDAX), glow discharge optical emission spectroscopy (GDOES) and X-ray fluorescence (XRF) for bulk material properties. A photo-electrochemical (PEC) cell and an optical absorption method have been used for determination of the electrical and optical properties of the thin films. XRD patterns indicate the growth of ZnSe layers with (1 1 1) as the preferred orientation. The XPS spectra are similar to those of commercially available ZnSe and the EDAX, GDOES and XRF also indicate the presence of Zn and Se in the layers. PEC studies show p-type semiconducting properties for the as deposited layers and n-type ZnSe can be produced by appropriate doping. Optical absorption is maximum around 460 nm indicating a band gap of 2.7 eV. Annealing at 200 °C for 15 mins improves both the crystallinity of the layers and the photoresponse of the electrolyte/ZnSe liquid/solid Schottky junction. © 1998 Chapman & Hall  相似文献   

3.
In this study, we report the electrosynthesis of zinc selenide (ZnSe) thin films on indium-doped tin oxide-coated glass substrates. The deposited ZnSe thin films have been characterized for structural (X-ray diffraction), surface morphological (scanning electron microscopy), compositional (energy dispersive analysis by X-rays), photo luminescence property, and optical absorption analysis. Formation of cubic structure with preferential orientation along the (111) plane was confirmed from structural analysis. In addition, the influence of the deposition potential on the microstructural properties of ZnSe is plausibly explained. The optical properties of ZnSe thin films are estimated using the transmission spectrum in the range of 400–1200 nm. The optical band gap energy of ZnSe thin films was found to be in the range between 2.52 and 2.61 eV. Photoluminescence spectra were observed at blue shifted band edge peak. The morphological studies depict that the spherical and cuboid shaped grains are distributed evenly over the entire surface of the film. The sizes of the grains are found to be in the range between 150 and 200 nm. The ZnSe thin film stoichiometric composition was observed at optimized deposition condition.  相似文献   

4.
Optical characteristics of thin ZnSe films of different thicknesses   总被引:1,自引:0,他引:1  
Polycrystalline ZnSe films of thicknesses 54–785 nm deposited on glass substrates by thermal evaporation were investigated. X-ray diffraction analysis was carried out on as-deposited and annealed films to determine their structure. The ZnSe films were polycrystalline of cubic structure with preferred [111] orientation. Transmission and reflection at normal incidence were performed on ZnSe films in the wavelength range 350–2500 nm to determine the optical constants and optical energy gap. The optical gaps of ZnSe films show remarkable dependence on the film thickness. Analysis of the absorption data revealed the existence of two transition processes (with energy gaps at 2.7 and 2.22 eV for the bulk ZnSe).  相似文献   

5.
The present work reports on the chemical synthesizes of (0–8 at.%) silver (Ag)-doped PbS thin films with tunable opto-electrical properties. From the X-ray diffraction analyses, it was understood that the preferred growth orientation of Ag:PbS films was dependent on the Ag doping concentration. The variation in the Ag:PbS films orientation was reflected in the film morphology as observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM studies revealed that the variation in Ag concentration lead to different grain shapes for different grain orientations. The AFM study showed that the RMS roughness of the undoped PbS film has been reduced considerably due to silver doping. From the optical studies, a widening in the optical band gap was revealed after Ag-doping due to the quantum confinement effect. It was obtained that 4 at.% Ag-doped PbS thin films display an optimum band gap value of 1.45 eV. As for electrical characterization result, the resistivity reduces and the carrier density improved with 4 at.% Ag concentration. Based on all the data, it was concluded that the 4 at.% Ag-doped PbS thin film showed the best morphological, optical and electrical behavior, which recommend it as an active layer for solar cell devices.  相似文献   

6.
Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, a preliminary and thorough study of optical and structural properties of the host material is an important step. Based on the above view, the structural and optical properties of CdSe films have been studied thoroughly in the present work. The host material, CdSe film, has been prepared by the physical vapour deposition method of electron beam evaporation (PVD: EBE) technique under a pressure of 5 × 10−5 mbar. The structural properties have been studied by XRD technique. The hexagonal structure with a preferred orientation along the (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films have been analysed for optical band gap and absorbed a direct intrinsic band gap of 1·92 eV.  相似文献   

7.
ZnSe thin films were prepared by thermal evaporation technique under high vacuum (10−6 Torr) at 300 K and different film thickness. The structure of thin films was measured using grazing incident in-plane X-ray diffraction (GIIXD) and shows single phase zinc blende structure. The particle sizes of the deposited films were estimated for low film thickness by TEM and high film thickness by GIIXD. The particle size of ZnSe films was decreased from ~8.53 to 3.93 nm as film thickness lowered from 200 to 20 nm which ensures the nanocrystalline structure. The optical transmission (T) and reflection (R) in the wavelength range 190–2,500 nm for irradiated and unirradiated ZnSe thin films under investigation were measured. The effect of irradiation of different energies in range (0.1–1.25 MeV) from X-ray, 137Cs and 60Co irradiation sources were studied for ZnSe thin films of 100 and 200 nm thicknesses. The dependence of the absorption spectra and refractive index were investigated for different energies irradiation sources. The ZnSe films show direct allowed interband transition. The effect of particle size of nanocrystalline ZnSe thin films for unirradiated and irradiated by gamma (γ) doses from 137Cs on the optical properties was studied. Both the optical energy bandwidth and absorption coefficient (α) were found to be (γ) dose dependent.  相似文献   

8.
We report the influence of rapid thermal annealing (RTA) on optical, electrical and structural properties of sprayed undoped CdO thin films. XRD investigation revealed that as-grown films are polycrystalline in nature with cubic structure; and pronounced improvement in crystallinity of the films have been noticed after annealing. RTA-treated films showed preferred orientation in the (2 0 0) direction. The optical band gap was deduced from transmittance data for as-grown and annealed films and found to be 2.51 eV for as-grown film and ranged between 2.25 and 2.48 eV for annealed films. Figure of merit was calculated and found its maximum value (1.2 × 10?2 Ω?1) was for film annealed with of 6 min. Thermoelectric power (TEP) measurements revealed that the CdO films are having n-type conductivity. Furthermore, the activation energy was calculated for films from TEP data. The lowest electrical resistivity was found to be 6 × 10?4 Ω cm for CdO film annealed with time ≥6 min. The observed changes demonstrated that RTA is a viable technique for improving characteristics of sprayed CdO films.  相似文献   

9.
Cadmium selenide (CdSe) thin films of high crystalline quality on glass substrate have been prepared by chemical bath deposition technique from an aqueous bath containing tetramine cadmium and sodium selenosulphate. Structural analysis using XRD shows that the film is single phase, crystallized in hexagonal structure with preferred growth in (111) direction. The energy band gap calculated from the absorption spectra of unannealed CdSe thin films shows an optical band gap of 1.8 eV and absorption coefficient near band edge (α)—0.58 × 105 cm−1. The conductivity of CdSe thin films is n-type.  相似文献   

10.
Nanocrystalline copper oxide (CuO) thin films have been synthesized by a sol–gel method using cupric acetate Cu (CH3COO) as a precursor. The as prepared powder was sintered at various temperatures in the range of (300–700?°C) and has been deposited onto a glass substrates using spin coating technique. The structural, compositional, morphological, electrical optical and gas sensing properties of CuO thin films have been studied by X-ray diffraction, Scanning Electron Microscopy (SEM), Four Probe Resistivity measurement and UV–visible spectrophotometer. The variation in annealing temperature affected the film morphology and optoelectronic properties. X-ray diffraction patterns of CuO films show that all the films are nanocrystallized in the monoclinic structure and present a random orientation. The crystallite size increases with increasing annealing temperature (40–45?nm).The room temperature dc electrical conductivity was increased from 10?6 to 10?5 (Ω?cm)?1, after annealing due to the removal of H2O vapor which may resist conduction between CuO grain. The thermopower measurement shows that CuO films were found of n-type, apparently suggesting the existence of oxygen vacancies in the structure. The electron carrier concentration (n) and mobility (μ) of CuO films annealed at 400–700?°C were estimated to be of the order of 4.6–7.2?×?1019?cm?3 and 3.7–5.4?×?10?5?cm2?V?1?s?1?respectively. It is observed that CuO thin film annealing at 700?°C after deposition provide a smooth and flat texture suited for optoelectronic applications. The optical band gap energy decreases (1.64–1.46?eV) with increasing annealing temperature. It was observed that the crystallite size increases with increasing annealing temperature. These modifications influence the morphology, electrical and optical properties.  相似文献   

11.
Copper indium diselenide (CuInSe2) compound was synthesized by reacting its elemental components, i.e., copper, indium, and selenium, in stoichiometric proportions (i.e., 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Structural and compositional characterization of synthesized pulverized material confirms the polycrystalline nature of tetragonal phase and stoichiometry. CuInSe2 thin films were deposited on soda lime glass substrates kept at different temperatures (300–573 K) using flash evaporation technique. The effect of substrate temperature on structural, morphological, optical, and electrical properties of CuInSe2 thin films were investigated using X-ray diffraction analysis (XRD), atomic force microscopy (AFM), optical measurements (transmission and reflection), and Hall effect characterization techniques. XRD analysis revealed that CuInSe2 thin films deposited above 473 K exhibit (112) preferred orientation of grains. Transmission and reflectance measurements analysis suggests that CuInSe2 thin films deposited at different substrate temperatures have high absorption coefficient (~104 cm−1) and optical energy band gap in the range 0.93–1.02 eV. Results of electrical characterization showed that CuInSe2 thin films deposited at different substrate temperatures have p-type conductivity and hole mobility value in the range 19–136 cm2/Vs. Variation of energy band gap and resistivity of CuInSe2 thin films deposited at 523 K with thickness was also studied. The temperature dependence of electrical conductivity measurements showed that CuInSe2 film deposited at 523 K has an activation energy of ~30 meV.  相似文献   

12.
Synthesis of cadmium selenide thin films by CBD method has been presented. The deposited film samples were subjected to XRD, SEM, UV-vis-NIR and TEP characterization. X-ray diffraction analysis showed that CdSe film sample crystallized in zinc blende or cubic phase structure. SEM studies reveal that the grains are spherical in shape and uniformly distributed all over the surface of the substrates. The optical band gap energy of as deposited film sample was found to be in the order of 1.8 eV. The electrical conductivity of the film sample was found to be 10−6 (Ω cm)−1 with n-type of conduction mechanism.  相似文献   

13.
Molecular beam deposition was used to deposit high quality zinc selenide (ZnSe) thin film on glass substrate at various substrate temperatures and Se/Zn beam equivalent pressure ratios. The best growth condition was identified by analyzing characteristics such as the full width at half-maximum and peak intensity of the (111) preferred orientation in X-ray diffraction patterns. The dependence of lattice constant, growth rate, film composition and optical property on a variety of growth parameters was discussed in detail to identify how the quality of ZnSe film can be improved.  相似文献   

14.
In order to obtain optimally adherent films having the highest mid-infrared photoluminescence efficiency, nanostructured Cr2+:ZnSe films were deposited at room temperature on various substrates by magnetron radiofrequency co-sputtering of a SiO2 target covered by a given number of ZnSe and Cr chips, at different Argon pressures and radiofrequency powers. The deposition parameter effect on the compositional, structural, microstructural and optical properties of the films has been investigated using X-ray reflectivity and diffraction, optical transmission spectroscopy, transmission electron microscopy, and photoluminescence studies. The corresponding films are composed by highly textured cubic and hexagonal ZnSe phases and exhibit strong tensile in-plane residual stresses. The evolution of the tensile residual stress and porosity values are consistent with the optical properties of the layers, and in particular the evolutions of both optical gap and refractive index. The room temperature mid-infrared (2-3 μm) photoluminescence measurements under direct excitation (1850 nm) revealed that chromium has been incorporated in the Cr2+ active state, and the corresponding fluorescence efficiency for an optimized thin film is only two times smaller than the one of a Cr2+:ZnSe reference bulk single crystal.  相似文献   

15.
Nanocrystalline ZnSe powder was prepared by mechanochemical process from Zn and Se pure granules. Zn and Se granules transformed to powder during mechanochemical reaction and ZnSe phase was observed after milling time of 16 min by XRD measurements. The crystallite size was measured to be 9–10 nm, while the powder particle size was found to be in the range 90–500 nm in the milling time range 20–60 min as measured by size analyzer and SEM. The homogeneity of the powder was confirmed by EDX analysis. The optical band gap was estimated from optical absorbance curve and possess the value in the range 2.58–2.95 eV. The absorbance peak was observed to be wider according the wide distribution of the crystallite size which affect on the energy gap according to energy gap confinement.  相似文献   

16.
Indium tin oxide (ITO) thin films were deposited on quartz substrates by radio frequency (RF) sputtering with different RF power (100–250 W) using the powder target at room temperature. The effect of sputtering power on their structural, electrical and optical properties was systematically investigated. The intensity of (400) orientation clearly increases with the sputtering power increases, although the films have (222) preferred orientation. Increasing sputtering power is benefit for lower resistivity and transmittance. The films were annealed at different temperature (500–800 °C), then we explored the relationship between their electro-optical and structural properties and temperature. It has been observed that the annealed films tend to have (400) orientation and then show the lower resistivity and transmittance. The ITO thin film prepared by RF sputtering using powder target at 700 °C annealing temperature and 200 W sputtering power has the resistivity of 2.08 × 10?4 Ω cm and the transmittance of 83.2 %, which specializes for the transparent conductive layers.  相似文献   

17.
In the present study, tin doped ZnO thin films (ZnO:Sn) at different contents (0–3 wt%) were deposited onto glass substrates by RF magnetron sputtering using a powder compacted target at room temperature. The effect of Sn concentration on the structural, optical and electrical properties of the ZnO:Sn thin films were investigated. The X-ray diffraction analysis shows that the pure ZnO thin film exhibits a strong intensity of the (002) peak indicating a preferential orientation along the c-axis. For Sn doped ZnO thin films, there is a change in the orientation from the (002) plane to the (101) one. The undoped ZnO thin films have transmittance 85% in the visible range and slightly increased for 0.5 wt% of Sn, while it get decreased with further increasing the Sn doping concentration. The optical band gap energy get increased with increasing the doping concentration. Moreover, the electrical conductivity and conduction mechanism are also studied by impedance spectroscopy in the frequency range of 1KHz–13 MHz at various temperatures (633–743 K). The AC conductivity in ZnO thin films increased with angular frequency. The frequency exponent S decreases with increasing temperature. Such behavior suggests that the correlated barrier hopping (CBH) model may be suitable to explain the conduction mechanism in ZnO thin films. The activation energy values calculated from angular frequency and DC conductivity are in good agreement confirming that the conduction mechanism is thermally activated by hopping between localized states.  相似文献   

18.
Transparent conductive Al-doped ZnO (AZO) thin films were deposited on various substrates including glass, polyimide film (PI) and stainless steel, using radio frequency magnetron sputtering method. The structural, electrical and optical properties of AZO thin films grown on various substrates were systematically investigated. We observe that substrate materials play important roles in film crystallization and resistivity but little on optical transmittance. X-ray diffractometer study shows that all obtained AZO thin films have wurtzite phase with highly c-axis preferred orientation, and films on glass present the strongest (002) diffraction peaks. The presence of compression stress plays critical role in determining the crystalline structure of AZO films, which tends to stretch the lattice constant c and enlarge the (002) diffraction angle. Although the films on the glass present the finest electrical properties and the resistivity reaches 12.52 × 10-4 Ωm, AFM study manifests that films on flexible substrates, especially stainless steel, bestrew similar inverted pyramid structure which are suitable for window material and electrode of solar cells. The average optical transmittance of AZO thin films deposited on glass and PI are both around 85% in the visible light range (400–800 nm).  相似文献   

19.
Probing into the elemental composition, structural, morphological, optical and electrical transport properties of chemically deposited Zn1?xCoxSe (0?≤?x?≤?0.275) thin films with a special emphasis given to the Co2+-concentration is presented in this paper. Elemental and structural analysis confirmed the successful realization of Co(ZnSe) thin films. Addition of Co2+ into ZnSe host lattice caused morphological changes from globule like morphology to the formation of leaf like appearance composing the disc-decked micro-flakes elongated in size. The optical studies done in the range of wavelengths between 350 to 1200 nm showed a slight red shift in the optical spectrum with increased Co2+ concentration in the ZnSe matrix. Effect of increased impurity addition is also reflected in the band gap measurements that a decrease in the bandgap, typically from 2.71 to 1.96 eV, is observed for an increase in Co2+ concentration from x?=?0–0.275. The other optical parameters namely, refractive index, extinction coefficient, power factor and dielectric constants were determined from these studies and other variations are adequately explained as a special reference to the Co-concentration. The composition dependence of the electrical transport characteristics were studied using the two-probe and Hall measurement techniques. The effect of Co-concentration on the transport characteristics has been studied and mechanism of an electrical conduction is discussed. A continuous increase in an electrical conductivity with n-type conduction has been observed for these samples.  相似文献   

20.
p-Type SnO thin films were fabricated via reactive RF magnetron sputtering on borosilicate substrates with an Sn target and Ar/O2/N2 gas mixture. The undoped SnO thin film consisted of a polycrystalline SnO phase with a preferred (1 0 1) orientation; however, with nitrogen doping, the preferred orientation was suppressed and the grain size decreased. The electrical conductivity of the undoped SnO thin films demonstrated a relatively low p-type conductivity of 0.05 Ω−1 cm−1 and it was lowered slightly with nitrogen doping to 0.039 Ω−1 cm−1. The results of the X-ray photoelectron spectroscopy suggested that the nitrogen doping created donor defects in the SnO thin films causing lower electrical conductivity. Lastly, both the undoped and doped SnO thin films had poor optical transmittance in the visible range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号