首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylene blue (MB) is a representative of a class of dyestuffs resistant to biodegradation. This paper presents a novel photocatalytic degradation of MB by La0.2Sr0.7Fe12O19 compound, which is a traditional permanent magnet and displays a large magnetic hysteresis (M–H) loop. The remnant magnetic moment and coercive field are determined to be 52 emu/g and 5876 Oe, respectively. UV–Visible optical spectroscopy reveals that La0.2Sr0.7Fe12O19 is simultaneously a semiconductor, whose direct and indirect band gap energies are determined to be 1.47 and 0.88 eV, respectively. The near infrared band gap makes it a good candidate to harvest sunlight for photocatalytic reaction or solar cell devices. This magnetic compound demonstrates excellent photocatalytic activity on degradation of MB under visible illumination. The colour of MB dispersion solution changes from deep blue to pale white and the absorbance decreases rapidly from 1.8 down to zero when the illumination duration extends to 6 h. Five absorption bands did not make any blue shifts along with the reaction time, suggesting a one-stepwise degradation process of MB, which makes La0.2Sr0.7Fe12O19 a unique magnetic catalyst and differs from TiO2 and other conventional catalysts.  相似文献   

2.
Polyaniline (PANI)/CoFe2O4/Ba3Co2Fe24O41 composite was prepared by an in-situ polymerization method. The phase structure, morphology and magnetic properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite were characterized by XRD, FT-IR, SEM, TEM, and VSM, respectively. The microwave absorption properties of the composite were investigated by using a vector network analyzer in the 2–18 GHz frequency range. The results show that the maximum reflection loss value of the PANI/CoFe2O4/Ba3Co2Fe24O41 composite reaches ?30.5 dB at 10.5 GHz with a thickness of 3 mm and the bandwidth of reflection loss below ?10 dB reaches up to 1.2 GHz. The excellent microwave absorption properties of the as-prepared PANI/CoFe2O4/Ba3Co2Fe24O41 composite due to the enhanced impedance match between dielectric loss and magnetic loss.  相似文献   

3.
Mn–Ni–Zn ferrite with the chemical formula of Mn0.2Ni0.3Zn0.5Fe2O4 was prepared by co-precipitation method. The X-ray diffraction (XRD) results show that the prepared sample crystallizes in the cubic spinel structure with the space group of Fm3m. The morphological analysis of the sample was investigated by scanning electron microscopy (SEM). The dielectric properties of Mn0.2Ni0.3Zn0.5Fe2O4 ferrite were studied in a frequency range from 20 Hz to 10 MHz and at a temperature range from 293 to 733 K. The dielectric constant decreases with the increasing frequency for all the temperature values chosen. The AC conductivity mechanism was found the small polaron type of conductivity, and in addition to that, the DC conductivity can be explained by Arrhenius type conductivity. According to the dielectric results, relaxation process fits Cole–Cole model. Finally, the effect of the relative humidity upon the impedance of the sample was discussed for a frequency range between 20 Hz and 10 MHz. It is found that the impedance values decrease almost linearly with the increasing % RH (relative humidity) values at low frequencies, while the impedance of the sample is independent of % RH at high frequencies.  相似文献   

4.
For the first time, the hierarchical structures of Li0.35Zn0.3Fe2.35O4(LZFO)/polyaniline nanocomposites were successfully synthesized by interfacial polymerization. Firstly, the LZFO particles were prepared by the sol–gel method, and subsequently the PANI nanorods, composed of nanoneedle-like PANI, were grafted on the surface of the LZFO. A novel microtopography, urchin-like, of LZFO/PANI was prepared by a simple, efficient and controllable two-step method. The crystal structure, chemical bonding states and morphology of samples were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Scanning and Transmission electron microscopy (SEM/TEM). The bandwidth of reflection loss exceeds 10 dB in the frequency was 5.56 GHz (3.36–8.48, 10.32–10.76 GHz), and the maximum reflection loss can reach ??49.4 dB at 4.96 GHz with the thickness of 5.1 mm. The enhanced microwave absorption properties of LZFO/PANI nanocomposites are mainly ascribed to the multi-level structure and the improved impedance matching, and make it a potential candidate for microwave absorption materials.  相似文献   

5.
The hollow polyaniline (PANI) microspheres were prepared by controlling the mass ratio of the aniline to polystyrene (PS) via a template method, and Fe3O4/PANI composite microspheres have been fabricated by blending the hollow PANI microspheres with Fe3O4 magnetic particles. The effects of the mass ratio of aniline/PS on the microwave absorption performances of Fe3O4/PANI microspheres were investigated. It was found that the value of minimum reflection loss (RLmin) of the microspheres were respectively ?14.06, ?22.34 and ?24.3 dB, corresponding to the mass ratio of aniline/PS of 1:1.5, 1:3, and 1:6. In addition, when the mass ratio of aniline/PS was 1:6, with the thickness of 1.5 and 2.0 mm, the bandwidth below ?10dB were respectively 2.48 GHz (15.52–18 GHz) and 4.64 GHz (11.04–15.68 GHz), indicating that the Fe3O4/PANI microspheres could be a potential electromagnetic wave absorbing material in X (8–12 GHz) and Ku (12–18 GHz) bands.  相似文献   

6.
The pure Bi2Fe4O9 and Bi2 (1?x) A2xFe4O9 (A?=?Ca, Ba, x?=?0.03) powders are synthesized via a modified solid-state reaction method to study the effects of alkaline-earth metal ions doping on crystal structural, optical and magnetic properties. Both X-ray diffraction and Raman spectroscopy data reveal that all the powders are Mullite-type Bi2Fe4O9 orthorhombic single phase without any impurities. Much greater structural distortion in Bi1.94Ba0.06Fe4O9 than that of Bi1.94Ca0.06Fe4O9 is observed. The chemical compositions of Ba2+ and Ca2+ doped powders have been investigated with energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectroscopy results indicate that oxygen vacancies could be found in all doped powders. The ratio of Fe2+ in the total Fe ions is almost unchanged by Ca doping and increases a little with Ba substitution. Compared with that of pure Bi2Fe4O9, the band gap values decrease slightly in Bi1.94Ca0.06Fe4O9 but drop dramatically in Bi1.94Ba0.06Fe4O9. A clear and obvious ferromagnetic behavior is found in Bi1.94Ba0.06Fe4O9 at 10 K. However, Bi1.94Ca0.06Fe4O9 shows a weak ferromagnetism with enhanced magnetization and Bi2Fe4O9 exhibits antiferromagnetism with a linear M–H relationship. The varied bandgap and magnetization resulting from the alkaline-earth metal ionic species are discussed in terms of structural distortion due to the ionic radius size effect.  相似文献   

7.
A conducting polymer, polyaniline (PANI)/Ni0.5Zn0.5Fe2O4 composites with high dielectric absorbing properties and electromagnetic shielding effectiveness at low frequencies were successfully synthesized through a simple in situ emulsion polymerization. PANI was doped with hydrochloric acid to improve its electrical properties and interactions with ferrite particles. PANI/Ni0.5Zn0.5Fe2O4 composites were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Frequency dependence of dielectric and ac conductivity (σac) studies have been undertaken on the PANI/Ni0.5Zn0.5Fe2O4 composites in the frequency range 50 Hz–5 MHz. The electrical conduction mechanism in the PANI/Ni0.5Zn0.5Fe2O4 is found to be in accordance with the electron hopping model. Further, frequency dependence of electromagnetic interference (EMI) shielding effectiveness (SE) is studied. The EMI shielding effectiveness is found to decrease with an increase in the frequency. The maximum value 55.14 dB of SE at 50 Hz was obtained at room temperature for PANI/Ni0.5Zn0.5Fe2O4 composites in the 50 Hz–5 MHz frequency range. PANI/Ni0.5Zn0.5Fe2O4 composites were demonstrated as a promising functional material for the absorbing of electromagnetic waves at low frequencies because of a large amount of dipole polarizations in the polymer backbone and at the interfaces of the Ni–Zn ferrite particles and PANI matrix.  相似文献   

8.
Spin-coated CuxCo1?xFe2O4 (x = 0, 0.2, 0.4, 0.6, and 0.8) thin films were prepared on Pt/TiO2/SiO2/Si substrates. Pt/CuxCo1?xFe2O4/Pt structures were fabricated to investigate the effect of Cu doping concentration on the resistive switching behaviors. Structural and morphology characterizations revealed that Cu doping improved the crystallization of the thin films as compared to undoped CoFe2O4. Current–voltage characterization showed that all CuxCo1?xFe2O4 thin films showed unipolar resistance switching, but the distribution range of the set voltage, reset voltage, and resistances were much reduced by Cu doping. Clear improvement in the stability of these parameters started to appear with x = 0.4, and the optimized performance was observed in the Pt/Cu0.6Co0.4Fe2O4/Pt structure. The improved stability of the switching parameters was attributed to the enhancement of hopping process between the Fe ions and the Cu ions in the spinel lattice. Our results indicated that appropriate adjustment of the doping elements in oxides can be a feasible approach in achieving stable resistance switching memory devices.  相似文献   

9.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

10.
The Mg3B2O6 ceramics with lithium magnesium zinc borosilicate (LMZBS) glass were prepared at a lower sintering temperature. The effects of the glass addition on the densification, phase development, microstructure and microwave dielectric properties of the Mg3B2O6 ceramics were investigated. The addition of LMZBS glass improved the densification and lowered the sintering temperature of Mg3B2O6 ceramics from 1,300 to 950 °C. X-ray diffraction patterns showed that Mg3B2O6 transformed into Mg2B2O5 and a new phase, Li2ZnSiO4, crystallized from the glass phase. Because of the high dielectric performance of these phases, Mg3B2O6 mixed with 55 wt% LMZBS sintered at 950 °C for 3 h had εr = 6.8, Q × f = 50,000 GHz, and τf = ?64 ppm/°C at 7.28 GHz. The chemical compatibility of ceramic-glass composites with Ag was also investigated for LTCC.  相似文献   

11.
Glasses with nominal compositions 11SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (1) and 15SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (2) were prepared by rapidly quenching oxide melts between counterrotating steel rollers. The glasses were then heat-treated in the range 650–950°C to produce glass-ceramic samples. The samples were characterized by X-ray diffraction, electron microscopy, and magnetic measurements. The phase composition of the glass-ceramics was determined, and their microstructure and magnetic properties were studied. The annealing temperature was shown to have a strong effect on the coercivity of the materials, which reaches 650 and 570 kA/m for compositions 1 and 2, respectively.  相似文献   

12.
In this work, Li0.435Zn0.195Fe2.37O4 (LZFO) was firstly prepared by the sol–gel process, and then core–shell polyaniline (PANI) nanorods/LZFO composites were successfully synthesized by interfacial polymerization. The structures and morphologies of samples were characterized by means of X-ray diffraction, Fourier transform infrared spectra, and scanning electron microscopy. The average size of the pure ferrites was about 0.75 μm and the size distribution was 0.3–1.0 μm. The results indicated that the composites with different morphologies and structures resulted in different electromagnetic properties. The electromagnetic absorption test demonstrated that the PANI nanorods/LZFO possessed the best absorption property. The value of the minimum reflection loss was ?51.1 dB at 9.86 GHz, and the absorption bandwidth exceeding ?10 dB was 2.3 GHz (from 3.7 to 6 GHz) and 2 GHz (from 15.7 to 17.7 GHz). The excellent electromagnetic wave absorption properties of the nanocomposites were attributed to the improved impedance matching and the enhanced interfacial effects.  相似文献   

13.
In this work, we developed a polymer encapsulation of Fe3O4 nanoparticles as a core–shell nanocluster with different sizes to investigate the cluster structure effect on their magnetic properties and magnetic heating behavior. Well-dispersed nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles were synthesized by microwave-assisted co-precipitation. The cluster sizes were tunable by varying the concentration of polymers used during synthesis. Nanoclusters present superparamagnetic behavior at room temperature with a reduction in saturation magnetization as a consequence of coating layer. The shift of blocking temperature to the higher value with increasing clusters size shows the stronger magnetic interaction in larger magnetic clusters. In a low alternating magnetic field with frequency of 178 Hz and amplitude of 103 Oe, nanoclusters offer a high heating efficiency. A maximum specific absorption rate of 204 W/g is observed in the sample with hydrodynamic size of 53 nm. In vitro cytotoxicity analysis performed on HeLa cells verified that nanoclusters show a good biocompatibility and can be an excellent candidate for applications in hyperthermia cancer treatment.  相似文献   

14.
We have studied the structural properties of the phase K1.2Cu0.4Fe2O4 and the effect of potassium on its catalytic activity for oxidation of carbon. The results demonstrate that the potassium-doped phase differs from the undoped ferrite CuFe2O4 in linear dimensions of its unit cell, high density of structural defects, and low-temperature activity and activation energy for the catalytic process. Contact interaction between K1.2Cu0.4Fe2O4 and carbon in the temperature range 240–420°C leads to the reduction of Cu2+ to Cu+ and the formation of Cu2O, CuFeO2, and K2Fe4O7. Testing results for the phases identified indicate that the catalytic processes in the presence of K2Fe4O7 and K1.2Cu0.4Fe2O4 are identical.  相似文献   

15.
A study of the structural characteristics of the composites [Pb(Fe0.5Nb0.5)O3(PFN)] x -[Cr0.75Fe1.25O3(CRFO)]100?x (x = 0 (CRFO100), 10, 50, 90, 100) was performed in this work. The compounds PFN100 and CRFO100 were prepared by conventional solid-state method and investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and 57Fe Mössbauer Spectroscopy techniques. The X-ray analysis shows that PFN100 is tetragonal and the CRFO100 phase has a trigonal symmetry. The refinement of all the composites was also performed and discussed in this paper. The Mössbauer spectrum for the composite samples shows a paramagnetic doublet and a sextet probably assigned to a magnetic phase associated to Fe+3. For the sample PFN100, only a magnetic field of 49.5 T (isomer shift (δ) = 0.21 mm/s) was detected. For the composite sample, the δ and Δ are typical of Fe ions at sites of octahedral coordination.  相似文献   

16.
A novel sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge was successfully prepared through a simple solvent-thermal and ultrasonic method. The structure and morphology of the composite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. This new structure can effectively prevent the agglomeration of GO and the combination of CNTs/Fe3O4 and RGO shows a strong reflection loss (RL) (?50 dB) at 8.7 GHz with absorber thickness of 2.5 mm. Moreover, compared with CNTs/Fe3O4/GO composite, it is found that the thermal treating process is beneficial to enhance the microwave absorption properties, which may be attributed to high conductivity of RGO. On this basis, the microwave absorbing mechanism is systematically discussed. All the data show that the CNTs/Fe3O4/RGO composite exhibits excellent microwave absorption properties with light density and is expected to have potential applications in microwave absorption.  相似文献   

17.
Reduced graphene oxide (RGO)/magnetite (Fe3O4) nanocomposite has been synthesized by an in-situ facile hydrothermal method. The XRD pattern reveals the development of nanocomposite in which both phases are coexistent. Raman Spectroscopy shows the main characteristics peaks of D and G bands at 1349 cm?1 and 1595 cm?1 for graphitic structures. The intensity ratio (ID/IG) is also calculated, which indicate the degree of defects in the material. This ratio (ID/IG), increases from 0.84 for GO to 0.91 for RGO/Fe3O4 nanocomposite and promotes the defects which are beneficial for electromagnetic (EM) absorption. The SEM image depicts that, Fe3O4 spherical nanoparticles are dispersed over the surface of graphene sheets and provide a thermal conducting path for heat dissipation between different layers of graphene. The EM absorption properties have been analyzed at 2–18 GHz of RGO and RGO/Fe3O4. The addition of proper content of Fe3O4 magnetic nanoparticles in RGO sheets improved the Reflection Loss (RL) from ??13.5 dB to ??20 dB at a frequency of 9.5 GHz. Moreover, due to magnetic loss and interfacial polarization, the effective bandwidth increases from 2.5 GHz to 3.8 GHz at a coating thickness of 1.5 mm. Hence this light weight nanocomposite is an excellent material for strong EM absorption in X-band.  相似文献   

18.
xBaTiO3 + (1 − x)Ni0.93Co0.02Cu0.05Fe2O4 (x = 0.5, 0.6, 0.7, 0.8) composites with ferroelectric–ferromagnetic characteristics were synthesized by the ceramic sintering technique. The presence of constituent phases in the composites was confirmed by X-ray diffraction studies. The average grain size was calculated by using a scanning electron micrograph. The dielectric characteristics were studied in the 100 kHz to 15 MHz. The dielectric constant changed higher with ferroelectric content increasing; and it was constant in this frequency range. The relation of dielectric constant with temperature was researched at 1, 10, 100 kHz. The Curie temperature would be higher with frequency increasing. The hysteresis behavior was studied to understand the magnetic properties such as saturation magnetization (M s). The composites were a typical soft magnetic character with low coercive force. Both the ferroelectric and ferromagnetic phases preserve their basic properties in the bulk composite, thus these composites are good candidates as magnetoelectric materials.  相似文献   

19.
Phase formation stages of MgWO4 and ZnWO4 (precursor compositions for following steps) were investigated by monitoring the reactions of oxide chemicals at various temperatures. Developed phases were examined by using X-ray diffraction (XRD). Successive attempts were also conducted for Pb(Mg1/2W1/2)O3 (PMW) and Pb(Zn1/2W1/2)O3 (PZW) by reacting PbO with the precursor compounds. Stages of phase development in the two compositions were also analyzed. The results are compared with those of another tungsten-containing perovskite Pb(Fe2/3W1/3)O3 (PFW) and its B-site precursor Fe2WO6. After PbO addition to the precursor powders, a perovskite phase formed directly (i.e., without any intermediate phases) in the case of PMW. For PbO + ½ZnWO4, in contrast, the decomposition of ZnWO4 and preferential reaction with PbO resulted in Pb2WO5 and ZnO, instead of the perovskite PZW.  相似文献   

20.
Despite having the same crystal structure, the two oxygen-deficient perovskites, BaSrCo2O6?δ and BaSrCoFeO6?δ have significantly different electrical conductivity and magnetic properties, highlighting the important effect of oxygen stoichiometry. These two materials have been investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, variable-temperature electrical conductivity and magnetization studies. BaSrCo2O6?δ shows magnetic properties consistent with antiferromagnetic order, whereas BaSrCoFeO6?δ exhibits the presence of uncompensated moments and short-range ferrimagnetism. XPS and iodometric titrations show a greater degree of oxygen vacancies in BaSrCo2O6?δ compared to BaSrCoFeO6?δ. Cobalt is in di- and trivalent states in both compounds and iron is in tri- and tetravalent states in BaSrCoFeO6?δ. The differences in electrical conductivity are remarkable, where BaSrCo2O6?δ shows nearly temperature-independent conductivity up to 400 °C, above which a semiconducting behavior sets in and persists up to 900 °C. However, BaSrCoFeO6?δ exhibits semiconductivity up to 200 °C, followed by a downturn in conductivity from 200 to 900 °C, similar to the behavior observed in metallic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号