首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

2.
In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x?=?1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J?=?0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43? can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.  相似文献   

3.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

4.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

5.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

6.
A series of novel red-emitting Na2Ca3???x Si2O8:xEu3+ phosphors were synthesized by solid state reactions. The phosphors can strongly absorb 395 nm light, and show red emission with a good color purity. The excitation and emission spectra properties of Na2Ca3Si2O8:Eu3+ were characterized. Na2Ca3Si2O8:Eu3+ with self-compensated and alkali metal ions charge compensated approaches (2Ca2+→Eu3+ + M+, M?=?Li+, Na+, K+) have investigated, which found that the red emission of luminescent intensity can be greatly enhanced, and shows superior luminescent property to the commercial Y203S:Eu3+. The present work implies that the efficient charge compensated phosphors are promising candidates as red-emitting phosphor for w-LEDs.  相似文献   

7.
This article present the reports on optical study of Eu2+ and Ce3+ doped SrMg2Al6Si9O30 phosphors, which has been synthesized by combustion method at 550 °C. Here SrMg2Al6Si9O30:Eu2+ emission band observed at 425 nm by keeping the excitation wavelength constant at 342 nm, whereas SrMg2Al6Si9O30:Ce3+ ions shows the broad emission band at 383 nm, under 321 nm excitation wavelength, both the emission bands are assigned due to 5d–4f transition respectively. Further, phase purity, morphology and crystallite size are confirmed by XRD, SEM and TEM analysis. However, the TGA analysis is carried out to know the amount of weight lost during the thermal processing. The CIE coordinates of SrMg2Al6Si9O30:Eu2+ phosphor is observed at x?=?0.160, y?=?0.102 respectively, which may be used as a blue component for NUV-WLEDs. The critical distance of energy transfer between Ce3+ ions and host lattice is found to be 10.65 Å.  相似文献   

8.
The Sm3+, Dy3+ doped and Sm3+/Dy3+ co-doped NaLa(MoO4)2 spherical phosphors were hydrothermally synthesized by the EDTA-2Na mediated method. Under the excitation of 297 nm, the quenching concentration of Sm3+ in NaLa(MoO4)2 host was determined to be 13%, and the concentration quenching mechanism was discussed to be the electric quadrupole–quadrupole interaction. After Sm3+ and Dy3+ ions were co-doped into the NaLa(MoO4)2 host, the energy transfer behaviors resulted from Dy3+ to Sm3+ ions were investigated by the help of the luminescent spectra of the obtained phosphors. By varying co-doping concentrations of Sm3+/Dy3+ ions, the emission color of NaLa(MoO4)2:Sm3+/Dy3+ can be tuned from reddish-orange, pink and white to bluish-green. The CIE chromaticity coordinate, the correlated color temperature and the quantum efficiency of NaLa0.87(MoO4)2:1%Sm3+, 12%Dy3+ were calculated to be (0.356, 0.320), 4353 K and 20%, respectively. Furthermore, in the temperature-dependent analysis, it presented good thermal stability, which can become a promising single-phased white-emitting phosphor for white LEDs devices. Based on these results, the possible energy transfer mechanism between Dy3+ and Sm3+ in NaLa(MoO4)2:Sm3+/Dy3+ was also proposed.  相似文献   

9.
BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d 5/2) and Eu2+(3d 3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f 65d 1 → 4f 7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.  相似文献   

10.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

11.
A series of SryCa1?x?yAlSiN3:xEu2+ (x = 0–0.01, y = 0–0.8) phosphors have been successfully prepared by solid state reaction under atmospheric pressure. All the phosphors exhibit orthorhombic crystal structure similar with CaAlSiN3 structure. It is found that the emission bands for all Ca1?xAlSiN3:xEu2+ phosphors are centered at ~650 nm and fluorescence quenching has been observed along with the increase of Eu2+ concentration in host materials. Through substitution of Ca2+ by Sr2+, an expected red emission peak (625 nm) and enhanced luminescent intensity can be achieved. The obtained Sr0.8Ca0.192AlSiN3:0.008Eu2+ phosphor was further used as efficient red component to fabricate white light emitting diodes (LEDs). Under the optimized condition of LED packaging, the white LEDs own the excellent optical properties with luminous efficiency of 90.6 lm/W and an ideal color rendering index (Ra = 82). Furthermore, the color correlated temperature of white LEDs can be simply adjusted through changing the red phosphor concentration and dispensing package saves time.  相似文献   

12.
Eu2+ and Tb3+ doped Ca2MgSi2O7 phosphors were synthesized by conventional solid-state reaction. The phase formation was confirmed by X-ray powder diffraction technique and refined lattice parameters were calculated by rietveld refinement process using Celref v3. The photoluminescence (PL) excitation and emission spectra were investigated. The phosphors exhibited broaden green emitting luminescence peaking at 520 nm when excited at 374 nm source. Morphological studies were carried out using Scanning electron microscopy (SEM) images of the sample with optimum PL emission. The dependence of photoluminescence intensity on co-dopant concentration and the kinetic parameters were also reported. Time resolved fluorescence spectroscopy (TRFS) is used to investigate the decay in luminescence signals with respect to time. The sample proved to be a good long lasting material, which makes it useful in emergency signs, textile printing, textile exit sign boards and electronic instrument dial pads etc.  相似文献   

13.
The photoluminescence spectra of titanium dioxide (TiO2) nanocrystals doped with Eu3+ (molar ratio Eu3+/TiO2 = 0, 1, 2, 4%) are investigated under different excitation wavelengths. An ultraviolet band of emission energy higher than the energy gap is found for excitation wavelengths larger than 315 nm when the Eu3+ content is higher than 2%. The new emission band redshifts and its emission intensity is intensified with the increase of excitation wavelength. The emission mechanism for the new ultraviolet emission band is analyzed.  相似文献   

14.
A series of single-phase Sr3YNa(PO4)3F:Dy3+ phosphors were successfully synthesized via a conventional solid state reaction process. The powder X-ray diffraction patterns were utilized to confirm the phase composite and crystal structure. The phosphor could be excited by the ultraviolet visible light in the region from 300 to 420 nm, and it shown two dominant emission bands peaking at 484 nm (blue light) and 580 nm (yellow light) which originated from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimum dopant concentration of Dy3+ ions was confirmed to be 7 mol% in Sr3YNa(PO4)3F:Dy3+ system and the concentration quenching mechanism is dipole–dipole interaction. The lifetime values of Dy3+ ions at different concentrations (x?=?0.03, 0.05, 0.07, 0.09 and 0.11) were determined to be about 0.855, 0.759, 0.686, 0.606 and 0.546 ms, respectively. The thermal stability of luminescence of Sr3YNa(PO4)3F:0.07Dy3+ phosphor was also investigated and the activated energy was deduced to be 0.228 eV, which shows good thermal stability. The chromaticity coordinates fall in the white-light region calculated by the emission spectrum. These results show that Sr3YNa(PO4)3F:Dy3+ phosphor can be a promising white emitting phosphor for white LEDs.  相似文献   

15.
Monodispersed spheres (1–4 μm in diameter) of BaWO4:Eu3+ (hereafter BWO:Eu) red-phosphor exhibiting intense emission at 615 nm were synthesized via a mild hydrothermal method. X-ray diffraction, scanning electron microscope, photoluminescence excitation and emission spectra, and decay curve were used to characterize the properties of BWO:Eu phosphors. An intense red emission was obtained by exciting either into the 5L6 state with 394 nm or the 5D2 state with 465 nm, that correspond to two popular emission lines from near-UV and blue LED chips, respectively. The values of Ω 2,4 experimental intensity parameters (13.8 × 10−20 and 8.2 × 10−20 cm2) are determined. The high-emission quantum efficiency of the BWO:Eu phosphor suggests this material could be promising red phosphors for generating white light in phosphor-converted white light-emitting diodes.  相似文献   

16.
Al18B4O33:Eu3+, Tb3+ whiskers have been successfully prepared by a simple gel nano-coating method using aluminum isopropoxide as the starting materials. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), and thermogravimetric analysis (TGA) were used characterize the samples. The results show coexistence of the crystal phase Al18B4O33, amorphous phase, and Eu3+, Tb3+ ions of the samples with initial addition Al/B ratios from 3 to 1 are incorporated into the amorphous phase. The Al18B4O33:Eu3+, Tb3+ whiskers are very straight with an average diameter of 600 nm and lengths ranging from 5 to 10 μm. Under ultraviolet excitation at 365 nm, samples show mainly exhibit the characteristic emission of Eu3+ corresponding to \( ^{ 5} {\text{D}}_{ 0} \to {\text{F}}_{ 1 , 2} \) transitions due to an efficient energy transfer occurs from Tb3+ to Eu3+.  相似文献   

17.
Homogeneous Y2O3:Eu3+ nanorods with the lengths of several micrometres were successfully synthesised on a large scale by using a urea-assisted hydrothermal method and a post-calcining process. In this study, the influences of urea content and NaOH concentration on the oriented growth, photoluminescence (PL) and electroluminescence (EL) intensity enhancement of Y2O3:Eu3+ were investigated. As a precipitant for isotropic growth, urea can counteract the effect of NaOH on oriented growth along the c-axis during hydrothermal treatment. The Y2O3:Eu3+ powders exhibited a strong red emission centred at 613 nm under either 245 nm UV excitation or the direct current high electric field. The PL intensity of the Y2O3:Eu3+ phosphor prepared with 0.3 g of urea reached 141 % that of the sample prepared under the same conditions but without urea. The strategy for controlling the oriented growth, PL and EL enhancement of Y2O3:Eu3+ can be extended to the synthesis of other inorganic nano/micromaterials.  相似文献   

18.
New red emitting phosphors, Ca3(VO4)2:Eu3+,Bi3+, Ca3((P,V)O4)2:Eu3+ were synthesized by low temperature solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy, photoluminescence spectra and Fourier transform infrared spectroscopy. The results show that the red emission located at about 613 nm was ascribed to 5 D 0-7 F 2 transition of Eu3+. The effect of by Bi doping and by P doping was also investigated systematically.  相似文献   

19.
In this paper, the structural, morphological and spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide perovskite phosphors are reported. The samples were synthesized by solid state reaction route with different doping concentrations of Eu3+ and Tb3+ ions. These synthesized phosphors were characterized by PXRD for structural analysis. The phosphors report orthorhombic structure with average crystallite size of 48 nm. FESEM and HRTEM analysis were done here for topographical and morphological studies. Also, the FTIR spectra of synthesized samples were investigated for functional group analysis. Photoluminescence and thermoluminescence spectra of synthesized samples were studied. On subjecting to 230 nm excitation, the phosphors give three distinct emissions of 596, 610 and 690 nm in the visible region corresponding to 5D07F1, 5D07F2 and 5D07F4 of Eu3+ ions. The synthesized samples were also subjected to CIE and Afterglow decay analysis. The average decay lifetime is recorded as 56.24 ns confirming the luminescence decay characteristics of short duration. In TL analysis of these phosphors, second-order kinetics with low activation energy varying from 0.50002 to 0.65668 eV is reported. The enhanced optical characteristics of prepared perovskite phosphor substantiate it as a proficient alternative for photovoltaic, optical and sensing applications.  相似文献   

20.
A series of Pr3+, Gd3+ and Pr3+–Gd3+-doped inorganic borate phosphors LiSr4(BO3)3 were successfully synthesized by a modified solid-state diffusion method. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. Surface morphology of the sample was studied by scanning electronic microscopy (SEM). The optimal concentrations of dopant Gd3+ ions in compound LiSr4(BO3)3 were determined through the measurements of photoluminescence (PL) spectra of phosphors. Gd3+-doped phosphors LiSr4(BO3)3 show strong band absorption in UV spectral region and narrow-band UVB emission under the excitation of 276 nm was only due to 6P J 8S7/2 transition of Gd3+ ions. The effect of Pr3+ ion on excitation of LiSr4(BO3)3:Gd3+ was also studied. The excitation of LiSr4(BO3)3:Gd3+, Pr3+ gives a broad-band spectra, which show very good overlap with the Hg 253.7 nm line. The photoluminescence spectra of LiSr4(BO3)3 with different doping concentrations Pr3+ and keeping the concentration of Gd3+ constant at 0.03 mol have also been studied. The emission intensity of LiSr4(BO3)3:Pr3+–Gd3+ phosphors increases with increasing Pr3+ doping concentration and reaches a maximum at 0.01 mol. From the photoluminescence study of LiSr4(BO3)3:Gd3+, Pr3+ we conclude that there was efficient energy transfer from Pr3+→ Gd3+ ions in LiSr4?x?y Pr x Gd y (BO3)3 phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号