首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
通过高能球磨和真空热压烧结技术制备了NiCrMoAlAg合金和NiCrMoAlAg-Al2O3复合材料。研究了Al2O3对NiCrMoAlAg-Al2O3复合材料的微观组织结构和机械性能的影响,考察了复合材料室温至800 ℃下的摩擦磨损性能并探究其磨损机理。结果表明:NiCrMoAlAg-Al2O3复合材料主要由镍基固溶体、Ag、Al的氧化物和微量??相组成;随着Al2O3加入,复合材料密度降低,但硬度、抗拉强度和抗压强度提高;NiCrMoAlAg-Al2O3复合材料摩擦系数随温度的升高逐渐减小,磨损率随着温度的升高先增大后减小;通过SEM及Raman分析发现,在600 ℃及以上摩擦过程中磨损表面形成了一层由NiO、MoO2、MoO3和Ag2MoO4等组成的润滑膜,从而降低了材料的摩擦系数和磨损率。  相似文献   

2.
基体共混改性对树脂基摩阻材料摩擦磨损性能的影响   总被引:3,自引:1,他引:3  
尹斌  滕杰  陈振华 《矿冶工程》2006,26(4):72-75
研究了树脂基摩阻材料的基体共混改性对树脂基摩阻材料/喷射沉积铝基复合材料摩擦副在干摩擦状态下摩擦磨损性能的影响, 着重探讨了腰果壳油改性酚醛树脂与丁腈橡胶(NBR)的比例对摩擦副的影响, 在此基础上制备出了用于1∶1台架制动试验的树脂基闸片。结果表明: 对于铝基复合材料, 树脂基摩阻材料腰果壳油改性酚醛树脂与丁腈橡胶的最佳比例为1∶1, 同时, 1∶1台架试验结果表明所制备的树脂基摩阻材料可以很好地适用于铝基复合材料制动盘, 满足200 km/h高速列车的制动要求。  相似文献   

3.
采用N-N'-4,4'-二苯甲烷型双马来酰亚胺(BMI)改性丁腈橡胶,并将其增韧的酚醛树脂应用于聚合物基摩擦材料中.通过对同一摩擦材料配方体系条件下,采用不同的改性树脂得到的摩擦材料的物理力学性能,如冲击强度、吸油、吸水性能及材料的摩擦磨损性能的表征,对比研究了采用不同BMI改性工艺后摩擦材料的摩擦磨损性能,指出以8%BMI改性的制品较为优良.  相似文献   

4.
设计压力施加顺序不同的热压成型工艺,研究其对树脂基摩擦材料物理性能和摩擦磨损性能的影响,并分析材料成型后的磨损机理。结果表明:采取变压的成型压力施加工艺,制得的试样在摩擦时会形成较好的摩擦转移膜,能够提高树脂基摩擦材料的耐高温性能,并增强其表观洛氏硬度;采取升压的成型压力工艺,制得的试样有着良好的基体联结结构,气孔率为5.78%,工作摩擦因数高而稳定,磨损主要表现为磨粒磨损;采取恒压的成型工艺,制得的试样具有较好的气孔率和磨损率,其磨损机理主要为黏着磨损;采取升压的成型工艺,制得的试样密度大而不均,各种原料在高温高压下不能充分流动,磨损后出现凹坑与纤维掉落。  相似文献   

5.
陈刚  马燕  陈振华 《非金属矿》2007,30(1):63-65,67
研究了在树脂基摩擦材料中添加固体润滑剂石墨、二硫化钼、焦炭粉,以适当调整其摩擦系数,并改善摩擦磨损性能.结果表明:树脂基摩擦材料中添加石墨可有效降低摩擦系数,大幅度提高复合材料及其摩擦副的耐磨性.树脂基摩擦材料中的二硫化钼在摩擦过程中,发生氧化转变为MoO3,失去了层状结构,因而不能使摩擦系数降低.焦炭粉的加入,也可降低树脂基摩擦材料的摩擦系数.  相似文献   

6.
通过粉末冶金方法制备了铜基摩擦材料,在经技术改进后的MM-1000摩擦试验机上对其在不同压力下的摩擦磨损性能进行了研究,结果表明:随着压力的增大,材料的摩擦系数呈降低趋势,在真空中的摩擦系数小于大气中的摩擦系数;真空中材料的摩擦系数稳定度高于大气环境中的,材料的磨损随压力的变化在两种环境下呈现出相反的变化形式。摩擦表面形成的摩擦膜对材料的摩擦磨损性能具有重要的影响;随着压力的增大,材料在真空中的磨损机理由以磨粒磨损为主逐渐转变为以黏着磨损为主。  相似文献   

7.
研究了硼改性树脂及其用量对制动摩擦材料摩擦磨损性能的影响,与普通酚醛树脂对比实验表明,采用硼改性树脂作为粘结剂的刹车片在高温、高速时不会出现热衰退现象,而且在整个过程中具有良好的摩擦因数和较低的磨损率,随着树脂计量和测试强度的加大,都能更明显地体现出硼改性树脂作为基体的刹车片的优良高温性能和较低的磨损率。  相似文献   

8.
以复合摩擦材料中的玻璃纤维为研究对象,硅烷偶联剂KH-550作为改性剂,探究了干法改性玻璃纤维对树脂基摩擦材料摩擦性能的影响,并采用红外光谱测试、台架试验、扫描电镜(SEM)和热重-差示扫描量热(TG-DSC)检测等对玻璃纤维改性效果、摩擦性能、作用机理和耐热性能进行分析。结果表明,干法改性工艺能够较好地将硅烷偶联剂KH-550包覆在玻璃纤维表面,改性玻璃纤维有利于稳定摩擦因数,改善摩擦材料的热衰退和抗磨损性能。当硅烷偶联剂KH-550用量为1%时,摩擦材料的摩擦因数μ1、μmax和μmin均得到提高,磨损量降低8%。KH-550增强了玻璃纤维与树脂的结合力,能较好地保持纤维在摩擦材料中完整形态,延缓了摩擦材料中树脂的分解,改善了摩擦材料的耐热性。  相似文献   

9.
酚醛树脂在陶瓷摩擦材料中的作用及其对摩擦性能的影响   总被引:4,自引:0,他引:4  
制备了不同含量丁腈橡胶改性酚醛树脂的陶瓷摩擦材料,并分析了改性树脂在材料中的作用及其对摩擦性能的影响。树脂含量在一定范围内(14.6%~23.6%),摩擦材料的摩擦性能好。为了评价用国家标准GB5763.1998测定的摩擦性能,提出了一个新的综合磨损率的定量表征方法。  相似文献   

10.
纸基摩擦材料性能影响因素的分析   总被引:6,自引:0,他引:6  
李海成 《矿山机械》1999,27(6):64-65
摩擦装置是机械系统中的重要部件,它包括摩擦离合器和摩擦制动器。而摩擦片又是离合器和制动器的关键零部件,摩擦材料的性能直接学系主机的可靠性、安全性。纸基摩擦材料出现于50年代末,由于具有高的动磨擦系数、低的动静比、传扭能力强、接合平稳、柔和、无冲击和无噪声等优点,现广泛应用于工程机械。农业机械、矿山机械、铲运机械、重型车辆。汽车和船舶工业传动等领域的湿式离合和制动,成为当今世界上产量最大、应用最广泛的湿式摩擦材料。我们在应用纸基摩擦材料的过程中,详细分析了影响纸基摩擦材料性能的各种因素,包括温度、油…  相似文献   

11.
杜菲  何林  管琪明 《非金属矿》2012,35(2):76-79
通过试验机将3种不同的坡缕石和3种不同的丁腈改性酚醛树脂分别热压制成不同的二元摩擦材料,研究了其摩擦磨损和耐冲击性能,结果表明,在高温阶段,坡缕石原矿与纳米改性树脂形成的摩擦材料性能比未改性丁腈酚醛树脂更好,铝锆偶联剂改性坡缕石与Al2O3纳米粒子改性树脂组成材料的摩擦磨损性能较未改性丁腈酚醛树脂有所下降,XD-172改性坡缕石与纳米Al2O3改性丁腈酚醛树脂组成材料的摩擦磨损性能在低温阶段有所提高。  相似文献   

12.
纳米铜改性酚醛树脂对摩擦材料摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
利用DM-S型摩擦材料试验机和XJJ-5型冲击试验机,对纳米铜改性酚醛树脂在干式摩擦材料中的应用进行了研究。结果表明:纳米铜改性酚醛树脂可显著提高摩擦材料的摩擦磨损性能和韧性;另外,纳米铜改性酚醛树脂的含量对摩擦材料的性能影响显著,在本试验条件下,改性树脂在摩擦材料中的较佳含量为33vol%。  相似文献   

13.
黄凯兵  黄志钢  尹聘希  高琳 《非金属矿》2007,30(4):65-67,70
采用不同比例的丁腈/氯醚橡胶,并用改性酚醛树脂作为半金属摩擦材料的基体材料,考察了模塑料制备工艺、后处理方式及硫化体系,对材料摩擦磨损性能和物理力学性能的影响规律.结果表明:丁腈与氯醚橡胶质量比为7:3,湿法制备,经160~180℃后处理的摩擦材料的综合性能好.  相似文献   

14.
用自行制备的坡缕石纳米粒子改性的热固性酚醛树脂湿法生产出半金属摩擦材料,研究了该树脂不同含量对摩擦材料摩擦和磨损主要性能的影响规律.通过SEM扫描电镜,对比分析了摩擦材料的表面形貌和影响的内在机理.结果表明在树脂含量为20%附近范围内随含量的增加,摩擦材料250℃以上的抗高温磨损能力明显提高,平均磨损率下降50%;热衰退温度点仍保持较高的水平,摩擦系数略有下降.  相似文献   

15.
以膨胀珍珠岩和热固性酚醛树脂为原料,盐酸磷酸混合酸为固化剂,制备膨胀珍珠岩/酚醛树脂轻质复合材料。运用单因素研究法探究了固化剂用量、加热成型温度、加热成型时间、主要原料的比例及酚醛树脂预热温度对轻质复合材料性能的影响。结果表明,固化剂用量为酚醛树脂质量的12%,固化温度为120℃,加热时间为2 h,酚醛树脂与膨胀珍珠岩的质量比为3.50时复合材料性能最优。其抗压强度为1.476 MPa,抗折强度为1.148 MPa,导热系数为0.048 W/(m·K),密度为320 kg/m3。  相似文献   

16.
为优化地铁疏散平台用酚醛玻璃钢的拉挤制备工艺,提高生产效率和增强其综合力学性能,对其材料体系的配比及拉挤工艺的优化开展研究工作。首先采用DSC对酚醛树脂体系进行测试,确定了体系的凝胶温度为180 ℃、拉挤速率为250 mm?min-1。对上述工艺条件下生产的酚醛玻璃钢的弯曲性能进行测试。结果表明,采用偶联剂能有效地提高产品的弯曲强度,最大弯曲强度高达450 MPa。说明,通过控制拉挤温度和速度,可实现酚醛玻璃钢疏散平台的稳定高效生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号