首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let $ Q$ be a complete residuated lattice. Let $\text {SetR}(Q)$ be the category of sets with similarity relations with values in $ Q$ (called $ Q$ -sets), which is an analogy of the category of classical sets with relations as morphisms. A cut in an $ Q$ -set $(A,\delta )$ is a system $(C_{\alpha })_{\alpha \in Q}$ , where $C_{\alpha }$ are subsets of $A\times Q$ . It is well known that in the category $\text {SetR}(Q)$ , there is a close relation between special cuts (called f-cuts) in an $ Q$ -set on one hand and fuzzy sets in the same $ Q$ -set, on the other hand. Moreover, there exists a completion procedure according to which any cut $(C_{\alpha })_{\alpha }$ can be extended onto an f-cut $(\overline{C_{\alpha }})_{\alpha }$ . In the paper, we prove that the completion procedure is, in some sense, the best possible. This will be expressed by the theorem which states that the category of f-cuts is a full reflective subcategory in the category of cuts.  相似文献   

2.
In this paper, we introduce the concept of $\lambda $ -statistical convergence of order $\theta $ and strong $\lambda $ -summability of order $\theta $ for the sequence of fuzzy numbers. Further the same concept is extended to the sequence of fuzzy functions and introduce the spaces like $S_\lambda ^\theta (\hat{f})$ and $\omega _{\lambda p} ^\theta (\hat{f})$ . Some inclusion relations in those spaces and also the underlying relation between these two spaces are also obtained.  相似文献   

3.
Uncertainty relations for more than two observables have found use in quantum information, though commonly known relations pertain to a pair of observables. We present novel uncertainty and certainty relations of state-independent form for the three Pauli observables with use of the Tsallis $\alpha $ -entropies. For all real $\alpha \in (0;1]$ and integer $\alpha \ge 2$ , lower bounds on the sum of three $\alpha $ -entropies are obtained. These bounds are tight in the sense that they are always reached with certain pure states. The necessary and sufficient condition for equality is that the qubit state is an eigenstate of one of the Pauli observables. Using concavity with respect to the parameter $\alpha $ , we derive approximate lower bounds for non-integer $\alpha \in (1;+\infty )$ . In the case of pure states, the developed method also allows to obtain upper bounds on the entropic sum for real $\alpha \in (0;1]$ and integer $\alpha \ge 2$ . For applied purposes, entropic bounds are often used with averaging over the individual entropies. Combining the obtained bounds leads to a band, in which the rescaled average $\alpha $ -entropy ranges in the pure-state case. A width of this band is essentially dependent on $\alpha $ . It can be interpreted as an evidence for sensitivity in quantifying the complementarity.  相似文献   

4.
In this paper, we consider the $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy and $(\overline{\in}_{\gamma},\overline{\in}_{\gamma} \vee \; \overline{\hbox{q}}_{\delta})$ -fuzzy subnear-rings (ideals) of a near-ring. Some new characterizations are also given. In particular, we introduce the concepts of (strong) prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings and discuss the relationship between strong prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals and prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings.  相似文献   

5.
Gábor Wiener 《Algorithmica》2013,67(3):315-323
A set system $\mathcal{H} \subseteq2^{[m]}$ is said to be separating if for every pair of distinct elements x,y∈[m] there exists a set $H\in\mathcal{H}$ such that H contains exactly one of them. The search complexity of a separating system $\mathcal{H} \subseteq 2^{[m]}$ is the minimum number of questions of type “xH?” (where $H \in\mathcal{H}$ ) needed in the worst case to determine a hidden element x∈[m]. If we receive the answer before asking a new question then we speak of the adaptive complexity, denoted by $\mathrm{c} (\mathcal{H})$ ; if the questions are all fixed beforehand then we speak of the non-adaptive complexity, denoted by $\mathrm{c}_{na} (\mathcal{H})$ . If we are allowed to ask the questions in at most k rounds then we speak of the k-round complexity of $\mathcal{H}$ , denoted by $\mathrm{c}_{k} (\mathcal{H})$ . It is clear that $|\mathcal{H}| \geq\mathrm{c}_{na} (\mathcal{H}) = \mathrm{c}_{1} (\mathcal{H}) \geq\mathrm{c}_{2} (\mathcal{H}) \geq\cdots\geq\mathrm{c}_{m} (\mathcal{H}) = \mathrm{c} (\mathcal{H})$ . A group of problems raised by G.O.H. Katona is to characterize those separating systems for which some of these inequalities are tight. In this paper we are discussing set systems $\mathcal{H}$ with the property $|\mathcal{H}| = \mathrm{c}_{k} (\mathcal{H}) $ for any k≥3. We give a necessary condition for this property by proving a theorem about traces of hypergraphs which also has its own interest.  相似文献   

6.
For hyper-rectangles in $\mathbb{R}^{d}$ Auer (1997) proved a PAC bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ , where $\varepsilon$ and $\delta$ are the accuracy and confidence parameters. It is still an open question whether one can obtain the same bound for intersection-closed concept classes of VC-dimension $d$ in general. We present a step towards a solution of this problem showing on one hand a new PAC bound of $O(\frac{1}{\varepsilon}(d\log d + \log \frac{1}{\delta}))$ for arbitrary intersection-closed concept classes, complementing the well-known bounds $O(\frac{1}{\varepsilon}(\log \frac{1}{\delta}+d\log \frac{1}{\varepsilon}))$ and $O(\frac{d}{\varepsilon}\log \frac{1}{\delta})$ of Blumer et al. and (1989) and Haussler, Littlestone and Warmuth (1994). Our bound is established using the closure algorithm, that generates as its hypothesis the intersection of all concepts that are consistent with the positive training examples. On the other hand, we show that many intersection-closed concept classes including e.g. maximum intersection-closed classes satisfy an additional combinatorial property that allows a proof of the optimal bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ . For such improved bounds the choice of the learning algorithm is crucial, as there are consistent learning algorithms that need $\Omega(\frac{1}{\varepsilon}(d\log\frac{1}{\varepsilon} +\log\frac{1}{\delta}))$ examples to learn some particular maximum intersection-closed concept classes.  相似文献   

7.
Using S.L. Sobolev’s method, we construct the interpolation splines minimizing the semi-norm in $K_2(P_2)$ , where $K_2(P_2)$ is the space of functions $\phi $ such that $\phi ^{\prime } $ is absolutely continuous, $\phi ^{\prime \prime } $ belongs to $L_2(0,1)$ and $\int _0^1(\varphi ^{\prime \prime }(x)+\varphi (x))^2dx<\infty $ . Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline is exact for the trigonometric functions $\sin x$ and $\cos x$ . Finally, in a few numerical examples the qualities of the defined splines and $D^2$ -splines are compared. Furthermore, the relationship of the defined splines with an optimal quadrature formula is shown.  相似文献   

8.
The inverse and reverse counterparts of the single-machine scheduling problem $1||L_{\max }$ are studied in [2], in which the complexity classification is provided for various combinations of adjustable parameters (due dates and processing times) and for five different types of norm: $\ell _{1},\ell _{2},\ell _{\infty },\ell _{H}^{\Sigma } $ , and $\ell _{H}^{\max }$ . It appears that the $O(n^{2})$ -time algorithm for the reverse problem with adjustable due dates contains a flaw. In this note, we present the structural properties of the reverse model, establishing a link with the forward scheduling problem with due dates and deadlines. For the four norms $\ell _{1},\ell _{\infty },\ell _{H}^{\Sigma }$ , and $ \ell _{H}^{\max }$ , the complexity results are derived based on the properties of the corresponding forward problems, while the case of the norm $\ell _{2}$ is treated separately. As a by-product, we resolve an open question on the complexity of problem $1||\sum \alpha _{j}T_{j}^{2}$ .  相似文献   

9.
Numerous problems in Theoretical Computer Science can be solved very efficiently using powerful algebraic constructions. Computing shortest paths, constructing expanders, and proving the PCP Theorem, are just few examples of this phenomenon. The quest for combinatorial algorithms that do not use heavy algebraic machinery, but are roughly as efficient, has become a central field of study in this area. Combinatorial algorithms are often simpler than their algebraic counterparts. Moreover, in many cases, combinatorial algorithms and proofs provide additional understanding of studied problems. In this paper we initiate the study of combinatorial algorithms for Distributed Graph Coloring problems. In a distributed setting a communication network is modeled by a graph $G=(V,E)$ of maximum degree $\varDelta $ . The vertices of $G$ host the processors, and communication is performed over the edges of $G$ . The goal of distributed vertex coloring is to color $V$ with $(\varDelta + 1)$ colors such that any two neighbors are colored with distinct colors. Currently, efficient algorithms for vertex coloring that require $O(\varDelta + \log ^* n)$ time are based on the algebraic algorithm of Linial (SIAM J Comput 21(1):193–201, 1992) that employs set-systems. The best currently-known combinatorial set-system free algorithm, due to Goldberg et al. (SIAM J Discret Math 1(4):434–446, 1988), requires $O(\varDelta ^2+\log ^*n)$ time. We significantly improve over this by devising a combinatorial $(\varDelta + 1)$ -coloring algorithm that runs in $O(\varDelta + \log ^* n)$ time. This exactly matches the running time of the best-known algebraic algorithm. In addition, we devise a tradeoff for computing $O(\varDelta \cdot t)$ -coloring in $O(\varDelta /t + \log ^* n)$ time, for almost the entire range $1 < t < \varDelta $ . We also compute a Maximal Independent Set in $O(\varDelta + \log ^* n)$ time on general graphs, and in $O(\log n/ \log \log n)$ time on graphs of bounded arboricity. Prior to our work, these results could be only achieved using algebraic techniques. We believe that our algorithms are more suitable for real-life networks with limited resources, such as sensor networks.  相似文献   

10.
We present a technique for numerically solving convection-diffusion problems in domains $\varOmega $ with curved boundary. The technique consists in approximating the domain $\varOmega $ by polyhedral subdomains $\mathsf{{D}}_h$ where a finite element method is used to solve for the approximate solution. The approximation is then suitably extended to the remaining part of the domain $\varOmega $ . This approach allows for the use of only polyhedral elements; there is no need of fitting the boundary in order to obtain an accurate approximation of the solution. To achieve this, the boundary condition on the border of $\varOmega $ is transferred to the border of $\mathsf{D }_h$ by using simple line integrals. We apply this technique to the hybridizable discontinuous Galerkin method and provide extensive numerical experiments showing that, whenever the distance of $\mathsf{{D}}_h$ to $\partial \varOmega $ is of order of the meshsize $h$ , the convergence properties of the resulting method are the same as those for the case in which $\varOmega =\mathsf{{D}}_h$ . We also show numerical evidence indicating that the ratio of the $L^2(\varOmega )$ norm of the error in the scalar variable computed with $d>0$ to that of that computed with $d=0$ remains constant (and fairly close to one), whenever the distance $d$ is proportional to $\min \{h,Pe^{-1}\}/(k+1)^2$ , where $Pe$ is the so-called Péclet number.  相似文献   

11.
Most state-of-the-art approaches for Satisfiability Modulo Theories $(SMT(\mathcal{T}))$ rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory $\mathcal{T} (\mathcal{T}{\text {-}}solver)$ . Often $\mathcal{T}$ is the combination $\mathcal{T}_1 \cup \mathcal{T}_2$ of two (or more) simpler theories $(SMT(\mathcal{T}_1 \cup \mathcal{T}_2))$ , s.t. the specific ${\mathcal{T}_i}{\text {-}}solvers$ must be combined. Up to a few years ago, the standard approach to $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ was to integrate the SAT solver with one combined $\mathcal{T}_1 \cup \mathcal{T}_2{\text {-}}solver$ , obtained from two distinct ${\mathcal{T}_i}{\text {-}}solvers$ by means of evolutions of Nelson and Oppen’s (NO) combination procedure, in which the ${\mathcal{T}_i}{\text {-}}solvers$ deduce and exchange interface equalities. Nowadays many state-of-the-art SMT solvers use evolutions of a more recent $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ procedure called Delayed Theory Combination (DTC), in which each ${\mathcal{T}_i}{\text {-}}solver$ interacts directly and only with the SAT solver, in such a way that part or all of the (possibly very expensive) reasoning effort on interface equalities is delegated to the SAT solver itself. In this paper we present a comparative analysis of DTC vs. NO for $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ . On the one hand, we explain the advantages of DTC in exploiting the power of modern SAT solvers to reduce the search. On the other hand, we show that the extra amount of Boolean search required to the SAT solver can be controlled. In fact, we prove two novel theoretical results, for both convex and non-convex theories and for different deduction capabilities of the ${\mathcal{T}_i}{\text {-}}solvers$ , which relate the amount of extra Boolean search required to the SAT solver by DTC with the number of deductions and case-splits required to the ${\mathcal{T}_i}{\text {-}}solvers$ by NO in order to perform the same tasks: (i) under the same hypotheses of deduction capabilities of the ${\mathcal{T}_i}{\text {-}}solvers$ required by NO, DTC causes no extra Boolean search; (ii) using ${\mathcal{T}_i}{\text {-}}solvers$ with limited or no deduction capabilities, the extra Boolean search required can be reduced down to a negligible amount by controlling the quality of the $\mathcal{T}$ -conflict sets returned by the ${\mathcal{T}_i}{\text {-}}solvers$ .  相似文献   

12.
In this paper we study gossip based information spreading with bounded message sizes. We use algebraic gossip to disseminate $k$ distinct messages to all $n$ nodes in a network. For arbitrary networks we provide a new upper bound for uniform algebraic gossip of $O((k+\log n + D)\varDelta )$ rounds with high probability, where $D$ and $\varDelta $ are the diameter and the maximum degree in the network, respectively. For many topologies and selections of $k$ this bound improves previous results, in particular, for graphs with a constant maximum degree it implies that uniform gossip is order optimal and the stopping time is $\varTheta (k + D)$ . To eliminate the factor of $\varDelta $ from the upper bound we propose a non-uniform gossip protocol, TAG, which is based on algebraic gossip and an arbitrary spanning tree protocol $\mathcal{S } $ . The stopping time of TAG is $O(k+\log n +d(\mathcal{S })+t(\mathcal{S }))$ , where $t(\mathcal{S })$ is the stopping time of the spanning tree protocol, and $d(\mathcal{S })$ is the diameter of the spanning tree. We provide two general cases in which this bound leads to an order optimal protocol. The first is for $k=\varOmega (n)$ , where, using a simple gossip broadcast protocol that creates a spanning tree in at most linear time, we show that TAG finishes after $\varTheta (n)$ rounds for any graph. The second uses a sophisticated, recent gossip protocol to build a fast spanning tree on graphs with large weak conductance. In turn, this leads to the optimally of TAG on these graphs for $k=\varOmega (\text{ polylog }(n))$ . The technique used in our proofs relies on queuing theory, which is an interesting approach that can be useful in future gossip analysis.  相似文献   

13.
Xian Xu 《Acta Informatica》2012,49(7-8):445-484
This is a paper on distinguishing and relating two important kinds of calculi through expressiveness, settling some critical but long unanswered questions. The delimitation of higher-order and first-order process calculi is a basic and pivotal topic in the study of process theory. Particularly, expressiveness studies mutual encodability, which helps decide whether process-passing or name-passing is more fundamental, and the way they ought to be used in both theory and practice. In this paper, we contribute to such demarcation with three major results. Firstly $\pi $ (first-order pi-calculus) can faithfully express $\varPi $ (basic higher-order pi-calculus). The calculus $\varPi $ has the elementary operators (input, output, composition and restriction). This actually is a corollary of a more general result, that $\pi $ can encode $\varPi ^r$ ( $\varPi $ enriched with the relabelling operator). Secondly $\varPi $ cannot interpret $\pi $ reasonably. This is of more significance since it separates $\varPi $ and $\pi $ by drawing a well-defined boundary. Thirdly an encoding from $\pi $ to $\varPi ^r$ is revisited and discussed, which not only implies how to make $\varPi $ more useful but also stresses the importance of name-passing in $\pi $ .  相似文献   

14.
Recently, Shabtay and Bensoussan (2012) developed an original exact pseudo-polynomial algorithm and an efficient $\upvarepsilon $ -approximation algorithm (FPTAS) for maximizing the weighted number of just-in-time jobs in a two-machine flow shop problem. The complexity of the FPTAS is $O$ (( $n^{4}/\upvarepsilon $ )log( $n$ / $\upvarepsilon $ )), where $n$ is the number of jobs. In this note we suggest another pseudo-polynomial algorithm that can be converted to a new FPTAS which improves Shabtay–Bensoussan’s complexity result and runs in $O(n^{3}/\upvarepsilon )$ time.  相似文献   

15.
The parallel complexity class $\textsf{NC}$ 1 has many equivalent models such as polynomial size formulae and bounded width branching programs. Caussinus et al. (J. Comput. Syst. Sci. 57:200–212, 1992) considered arithmetizations of two of these classes, $\textsf{\#NC}$ 1 and $\textsf{\#BWBP}$ . We further this study to include arithmetization of other classes. In particular, we show that counting paths in branching programs over visibly pushdown automata is in $\textsf{FLogDCFL}$ , while counting proof-trees in logarithmic width formulae has the same power as $\textsf{\#NC}$ 1. We also consider polynomial-degree restrictions of $\textsf{SC}$ i , denoted $\textsf{sSC}$ i , and show that the Boolean class $\textsf{sSC}$ 1 is sandwiched between $\textsf{NC}$ 1 and $\textsf{L}$ , whereas $\textsf{sSC}$ 0 equals $\textsf{NC}$ 1. On the other hand, the arithmetic class $\textsf{\#sSC}$ 0 contains $\textsf{\#BWBP}$ and is contained in $\textsf{FL}$ , and $\textsf{\#sSC}$ 1 contains $\textsf{\#NC}$ 1 and is in $\textsf{SC}$ 2. We also investigate some closure properties of the newly defined arithmetic classes.  相似文献   

16.
We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

17.
We study broadcasting, also known as one-to-all communication, in synchronous radio networks with known topology modeled by undirected (symmetric) graphs, where the interference range of a node is likely exceeding its transmission range. In this model, if two nodes are connected by a transmission edge they can communicate directly. On the other hand, if two nodes are connected by an interference edge they cannot communicate directly and transmission of one node disables recipience of any message at the other node. For a network $G,$ we term the smallest integer $d$ , s.t., for any interference edge $e$ there exists a simple path formed of at most $d$ transmission edges connecting the endpoints of $e$ as its interference distance $d_I$ . In this model the schedule of transmissions is precomputed in advance. It is based on the full knowledge of the size and the topology (including location of transmission and interference edges) of the network. We are interested in the design of fast broadcasting schedules that are energy efficient, i.e., based on a bounded number of transmissions executed at each node. We adopt $n$ as the number of nodes, $D_T$ is the diameter of the subnetwork induced by the transmission edges, and $\varDelta $ refers to the maximum combined degree (formed of transmission and interference edges) of the network. We contribute the following new results: (1) We prove that for networks with the interference distance $d_I\ge 2$ any broadcasting schedule requires at least $D_T+\varOmega (\varDelta \cdot \frac{\log {n}}{\log {\varDelta }})$ rounds. (2) We provide for networks modeled by bipartite graphs an algorithm that computes $1$ -shot (each node transmits at most once) broadcasting schedules of length $O(\varDelta \cdot \log {n})$ . (3) The main result of the paper is an algorithm that computes a $1$ -shot broadcasting schedule of length at most $4 \cdot D_T + O(\varDelta \cdot d_I \cdot \log ^4{n})$ for networks with arbitrary topology. Note that in view of the lower bound from (1) if $d_I$ is poly-logarithmic in $n$ this broadcast schedule is a poly-logarithmic factor away from the optimal solution.  相似文献   

18.
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by ${\mathbb{F}}^{*}$ -graphs— $\mathbb {F}$ -coloured graphs where each edge has exactly one colour from $\mathbb{F}\setminus \{0\},\ \mathbb{F}$ a field—and named respectively $\mathbb{F}$ -rank-width and $\mathbb {F}$ -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for $\mathbb{F}^{*}$ -graphs and prove that $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width are characterised by a list of $\mathbb{F}^{*}$ -graphs to exclude as vertex-minors (this list is finite if $\mathbb{F}$ is finite). An algorithm that decides in time O(n 3) whether an $\mathbb{F}^{*}$ -graph with n vertices has $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) at most k, for fixed k and fixed finite field $\mathbb{F}$ , is also given. Graph operations to check MSOL-definable properties on $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.  相似文献   

19.
We employ geometric discord and measurement induced nonlocality to quantify quantumness of some well-known bipartite bound entangled states, namely the two families of Horodecki’s ( $2\otimes 4, 3\otimes 3$ and $4\otimes 4$ dimensional) bound entangled states and that of Bennett et al.’s in $3\otimes 3$ dimension. In most of the cases our results are analytic and both the measures attain relatively small value. The amount of quantumness in the $4\otimes 4$ bound entangled state of Benatti et al. and the $2\otimes 8$ state having the same matrix representation (in computational basis) is same. Coincidently, the $2m\otimes 2m$ Werner and isotropic states also exhibit the same property, when seen as $2\otimes 2m^2$ dimensional states.  相似文献   

20.
We study the null controllability of Kolmogorov-type equations $\partial _t f + v^\gamma \partial _x f - \partial _v^2 f = u(t,x,v) 1_{\omega }(x,v)$ in a rectangle $\Omega $ , under an additive control supported in an open subset $\omega $ of $\Omega $ . For $\gamma =1$ , with periodic-type boundary conditions, we prove that null controllability holds in any positive time, with any control support $\omega $ . This improves the previous result by Beauchard and Zuazua (Ann Ins H Poincaré Anal Non Linéaire 26:1793–1815, 2009), in which the control support was a horizontal strip. With Dirichlet boundary conditions and a horizontal strip as control support, we prove that null controllability holds in any positive time if $\gamma =1$ or if $\gamma =2$ and $\omega $ contains the segment $\{v=0\}$ , and only in large time if $\gamma =2$ and $\omega $ does not contain the segment $\{v=0\}$ . Our approach, inspired from Benabdallah et al. (C R Math Acad Sci Paris 344(6):357–362, 2007), Lebeau and Robbiano (Commun Partial Differ Equ 20:335–356, 1995), is based on two key ingredients: the observability of the Fourier components of the solution of the adjoint system, uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号