首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on formula-fed infants indicate a beneficial effect of dietary DHA on visual acuity. Cross-sectional studies have shown an association between breast-milk DHA levels and visual acuity in breast-fed infants. The objective in this study was to evaluate the biochemical and functional effects of fish oil (FO) supplements in lactating mothers. In this double-blinded randomized trial, Danish mothers with habitual fish intake below the 50th percentile of the Danish National Birth Cohort were randomized to microencapsulated FO [1.3 g/d long-chain n−3 FA (n−3 LCPUFA)] or olive oil (OO). The intervention started within a week after delivery and lasted 4 mon. Mothers with habitual high fish intake and their infants were included as a reference group. Ninety-seven infants completed the trial (44 OO-group, 53 FO-group) and 47 reference infants were followed up. The primary outcome measures were: DHA content of milk samples (0, 2, and 4 mon postnatal) and of infant red blood cell (RBC) membranes (4 mon postnatal), and infant visual acuity (measured by swept visual evoked potential at 2 and 4 mon of age). FO supplementation gave rise to a threefold increase in the DHA content of the 4-mon milk samples (P<0.001). DHA in infant RBC reflected milk contents (r=0.564, P<0.001) and was increased by almost 50% (P<0.001). Infant visual acuity was not significantly different in the randomized groups but was positively associated at 4 mon with infant RBC-DHA (P=0.004, multiple regression). We concluded that maternal FO supplementation during lactation did not enhance visual acuity of the infants who completed the intervention. However, the results showed that infants with higher RBC levels of n−3 LCPUFA had a better visual acuity at 4 mon of age, suggesting that n−3 LCPUFA may influence visual maturation.  相似文献   

2.
Garg ML  Leitch J  Blake RJ  Garg R 《Lipids》2006,41(12):1127-1132
Recent studies have demonstrated that long-chain n−3 PUFA (LCn-3PUFA) are beneficial in reducing the risk of cardiac arrhythmias. This study was conducted to determine the extent of incorporation of LCn-3PUFA into human atrium following supplementation with a fish oil concentrate high in LCn-3PUFA. Volunteers preparing for coronary bypass surgery were randomized either to the treatment group (n=8), receiving 6 g/d of fish oil concentrate (4.4 g of LCn-3PUFA), or the placebo group (n=9), receiving 6 g/d of olive oil for a minimum period of 6 wk. Blood samples were collected prior to commencement of treatment, and preoperatively before bypass surgery. Atrial biopsies were obtained during surgery. The plasma and atrium samples were analyzed by GC following trans-methylation to determine FA profile. Post-supplementation, the treatment group had significantly higher plasma levels of 20∶5n−3, 22∶5n−3, and 22∶6n−3 than the placebo group. Analysis of the atrium total lipids revealed a significant increase in the proportion of 20∶5n−3 following fish oil supplementation. There was no significant difference in the concentration of 22∶5n−3 and 22∶6n−3 in the atrium total lipids; however, an upward trend was observed in subjects receiving fish oil supplementation. In the phospholipid fraction of the atrium, both 20∶5n−3 and 22∶6n−3 increased, whereas 20∶4n−6 levels decreased. This study demonstrates for the first time that short-term supplementation with fish oil concentrate results in significant incorporation of LNc-3PUFA with a concomitant depletion of the eicosanoid substrate (20∶4n−6) in the human atrium.  相似文献   

3.
Human erythrocytes in the circulation undergo dynamic oxidative damage involving membrane lipid peroxidation and protein aggregation during aging. The present study was undertaken to determine the effect of n−3 fatty acid supplementation on lipid peroxidation and protein aggregation in the circulation and also the in vitro susceptibility of rat erythrocyte membranes to oxidative damage. Wistar male rats were fed a diet containing n−6 fatty acid-rich safflower oil or n−3 fatty acid-rich fish oil with an equal amount of vitamin E for 6 wk. n−3 Fatty acid content in erythrocyte membranes of rats fed fish oil was significantly higher than that of rats fed safflower oil. The degree of membrane lipid peroxidation and protein aggregation of rats fed fish oil was not significantly higher than that of rats fed safflower oil when the amounts of phospholipid hydroper-oxides, thiobarbituric acid-reactive substances, and detergent-insoluble protein aggregates were measured. When isolated erythrocytes were oxidized under aerobic conditions in the presence of Fe(III), the degree of membrane lipid peroxidation of erythrocytes from rats fed fish oil was increased to a greater extent than that of rats fed safflower oil, whereas the degree of membrane protein aggregation of both groups was increased in a similar extent. Hence, n−3 fatty acid supplementation did not affect lipid peroxidation and protein aggregation in membranes of circulating rat erythrocytes, and the supplementation increased the susceptibility of isolated erythrocytes to lipid peroxidation, but not to protein aggregation, under the aerobic conditions. If a sufficient amount of vitamin E is supplied, n−3 fatty acid supplementation may give no undesirable oxidative effects on rat erythrocytes in the circulation.  相似文献   

4.
Sufficient availability of both n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA) is required for optimal structural and functional development in infancy. The question has been raised as to whether infant formulae would benefit from enrichment with 20 and 22 carbon fatty acids. To address this issue, we determined the effect of fish oil and phospholipid (LCPUFA) sources on the fatty acid composition of brain cortical areas and nonneural tissues of newborn piglets fed artificially for 2 wk. They were fed sow milk, a control formula, or the formula enriched with n-3 fatty acids from a low-20:5n-3 fish oil added at a high or a low concentration, or the formula enriched with n-3 and n-6 fatty acids from either egg yolk- or pig brain-phospholipids. Both the fish oil- and the phospholipid-enriched formula produced significantly higher plasma phospholipid 22:6n-3 concentrations than did the control formula. The 22:6n-3 levels in the brain, hepatic, and intestinal phospholipids were significantly correlated with plasma values, whereas cardiac 22:6n-3 content appeared to follow a saturable dose-response. Feeding sow milk resulted in a much higher 20:4n-6 content in nonneural tissues than did feeding formula. Supplementation with egg phospholipid increased the 20:4n-6 content in the heart, red blood cells, plasma, and intestine in comparison to the control formula, while pig brain phospholipids exerted this effect in the heart only. The addition of 4.5% fish oil in the formula was associated with a decline in 20:4n-6 in the cortex, cerebellum, heart, liver, and plasma phospholipids, whereas using this source at 1.5% limited the decline to the cerebellum, liver, and plasma. Whatever the dietary treatment, the phosphatidylethanolamine 20:4n-6 level was 10–20% higher in the brain temporal lobe than in the parietal, frontal, and occipital lobes in the temporal lobe by administering the formula enriched with egg or brain phospholipids. In conclusion, feeding egg phospholipids to neonatal pigs increased both the 22:6n-3 content in the brain and the 20:4n-6 content in the temporal lobe cortex. This source also increased the 22:6n-3 levels in nonneural tissues with only minor alterations of 20:4n-6. These data support the notion that infant formulae should be supplemented with both 22:6n-3 and 20:4n-6 rather than with 22:6n-3 alone.  相似文献   

5.
Ando K  Nagata K  Yoshida R  Kikugawa K  Suzuki M 《Lipids》2000,35(4):401-407
The present study was undertaken in order to reexamine the effect of n−3 polyunsaturated fatty acid (PUFA)-rich diet supplementation on lipid peroxidation and vitamin E status of rat organs. Male Wistar rats were fed a diet containing safflower or fish oil at 50 g/kg diet and an equal amount of vitamin E at 59 mg/kg diet (1.18 g/kg oil; and 1.5 g/kg PUFA in safflower oil diet, and 4.3 g/kg PUFA in fish oil diet) for 6 wk. Fatty acid composition of total lipids of brain, liver, heart, and lung of rats fed fish oil was rich in n−3 PUFA, whereas that of each organ of rats fed safflower oil was rich in n−6 PUFA. The vitamin E levels in liver, stomach, and testis of the fish oil diet group were slightly lower than those of the safflower oil diet group, but the levels in brain, heart, lung, kidney, and spleen were not different between the two diet groups. The levels of phospholipid hydroperoxides were determined by the high-performance liquid chromatography-chemiluminescence method and the levels of thiobarbituric acid-reactive substances (TBARS) were determined at pH 3.5 in the presence of butylated hydroxytoluene with or without EDTA. Levels of phospholipid hydroperoxides and TBARS in the brain, liver, heart, lung, kidney, spleen, stomach and testis of the fish oil diet group were similar to those of the safflower oil diet group. The results indicate that high fish oil intake does not induce increased levels of phospholipid hydroperoxides and TBARS in rat organs.  相似文献   

6.
The influence of grass-only diets either from rye-grass-dominated lowland pastures (400 m above sea level) or botanically diverse alpine pastures (2000 m) on the FA profile of milk was investigated using three groups of six Brown Swiss cows each. Two groups were fed grass-only on pasture (P) or freshly harvested in barn (B), both for two experimental periods in the lowlands and, consecutively, two periods on the alp. Group C served as the control, receiving a silage-concentrate diet and permanently staying in the lowlands. Effects of vegetation stage or pasture vs. barn feeding on milk fat composition were negligible. Compared with the control, α-linoleic acid (18∶3n−3) consumption was elevated in groups P and B (79%, P<0.001) during the lowland periods but decreased on the alp to the level of C owing to feed intake depression and lower 18∶3n−3 concentration in the alpine forage. Average 18∶3n−3 contents of milk fat were higher in groups, P and B than in C by 33% (P<0.01) at low and by 96% (P<0.001) at high altitude, indicating that 18∶3n−3 levels in milk were to some extent independent of 18∶3n−3 consumption. The cis-9,trans-11 CLA content in milk of grass-fed cows was higher compared with C but lower for the alpine vs. lowland periods whereas the trans-11, cis-13 isomer further increased with altitude. Long-chain n−3 FA and phytanic acid increased while arachidonic acid decreased with grass-only feeding, but none of them responded to altitude. Grass-only feeding increased milk α-tocopherol concentration by 86 and 134% at low and high altitude (P<0.001), respectively. Changes in the ruminal ecosystem due to energy shortage or specific secondary plant metabolites are discussed as possible causes for the high 18∶3n−3 concentrations in alpine milk.  相似文献   

7.
Ikemoto A  Ohishi M  Hata N  Misawa Y  Fujii Y  Okuyama H 《Lipids》2000,35(10):1107-1115
Docosahexaenoic acid (DHA, 22∶6n−3) is one of the major polyunsaturated fatty acids esterified predominantly in aminophospholipids such as ethanolamine glycerophospholipid (EtnGpl) and serine glycerophospholipid (SerGpl) in the brain. Synaptosomes prepared from rats fed an n−3 fatty acid-deficient safflower oil (Saf) diet had significantly decreased 22∶6n−3 content with a compensatory increased 22∶5n−6 content when compared with rats fed an n−3 fatty acid-sufficient perilla oil (Per) diet. When the Saf group was shifted to a diet supplemented with safflower oil plus 22∶6n−3 (Saf+DHA) after weaning, 22∶6n−3 content was found to be restored to the level of the Per group. The uptake of [3H]ethanolamine and its conversion to [3H]EtnGpl did not differ significantly among the three dietary groups, whereas the formation of [3H]lysoEtnGpl from [3H]ethanolamine was significantly lower in the Saf group than in the other groups. The uptake of [3H]serine, its incorporation into [3H]SerGpl, and the conversion into [3H]EtnGpl by decarboxylation of [3H]SerGpl did not differ among the three dietary groups. The observed decrease in lysoEtnGpl formation associated with a reduction of 22∶6n−3 content in rat brain synaptosomes by n−3 fatty acid deprivation may provide a clue to reveal biochemical bases for the dietary fatty acids-behavior link.  相似文献   

8.
The effect of N-ethyl-maleimide (NEM) on Δ5-and Δ6-desaturase activities and the incorporation of substrates and products into different microsomal lipid classes and phospholipid (PL) subclasses were studied in human fetal liver microsomes, obtained after legally approved therapeutic abortion. Desaturase activities were measured by a radiochemical method using reversed-phase high-performance liquid chromatography (HPLC). After nonphospholipid (NPL) and PL separation on silica cartridges, the radioactivity in different lipids of the NPL group was assessed by two-dimensional thin-layer chromatography, and their fatty acid (FA) composition by gas-liquid chromatography. The PL subclasses were separated, and the distribution of radioactivity between products and substrates was determined in PL subclasses. NEM inhibited the Δ5- and Δ6-desaturase activities in the n−6 series of FA but not the Δ6-desaturase activity in the n−3 series, which suggests the existence of two distinct Δ6-desaturases, one for the n−6 series and another for the n−3 series. Whether NEM was present or absent, most of the radioactivity was recovered in the free FA form (about 80%). The desaturation products, obtained in the presence or absence of NEM, were preferentially incorporated into PL, suggesting a channeling of the newly synthesized FA toward microsomal PL. The comparison of the distribution of substrates and products incorporated into the different PL classes showed that most of the labeled FA were incorporated into phosphatidylcholine and to a lesser degree into phosphatidylethanolamine.  相似文献   

9.
Arachidonic acid (20∶4n−6, ArA) and its eicosanoid metabolites have been demonstrated to be implicated in immune functions of vertebrates, fish, and insects. Thus, the aim of this study was to assess the impact of ArA supplementation on the FA composition and hemocyte parameters of oysters Crassostrea gigas. Oyster dietary conditioning consisted of direct addition of ArA solutions at a dose of 0, 0.25, or 0.41 μg ArA per mL of seawater into tanks in the presence or absence of T-Iso algae. Results showed significant incorporation of ArA into gill polar lipids when administered with algae (up to 19.7%) or without algae (up to 12.1%). ArA supplementation led to an increase in hemocyte numbers, phagocytosis, and production of reactive oxygen species by hemocytes from ArA-supplemented oysters. Moreover, the inhibitory effect of Vibrio aestuarianus extracellular products on the adhesive proprieties of hemocytes was lessened in oysters fed ArA-supplemented T-Iso. All changes in oyster hemocyte parameters reported in the present study suggest that ArA and/or eicosanoid metabolites affect oyster hemocyte functions.  相似文献   

10.
Bazinet RP  McMillan EG  Cunnane SC 《Lipids》2003,38(10):1045-1049
alpha-Linolenic acid (18:3n-3) is a precursor to DHA (22:6n-3), which is essential for normal growth and development in the infant. This study was undertaken to assess how a raised 18:3n-3 intake in sows affects the n-3 PUFA content of the suckling piglet. Sows consumed a high-18:3n-3 or control diet (n-3 PUFA/n-6 PUFA, 0.5 vs. 0.05, respectively) for 10 d prior to parturition and for 14 d postpartum. Piglets suckled from their mothers until 14 d of age, when they were sacrificed. Sows consuming the high-18:3n-3 diet had 141% more 18:3n-3 and 86% more 22:6n-3 in their milk compared to control sows. There was no difference in the proximate composition of the piglets. The n-3/n-6 PUFA ratio was 82% higher in the milk of sows consuming the high-18:3n-3 diet compared to controls. Piglets suckling from sows consuming the high-18:3n-3 diet had 423% more 18:3n-3 in the carcass as well as a 460% higher n-3/n-6 PUFA ratio than controls. The piglets suckling from sows consuming the high-18:3n-3 diet had 333% more 18:3n-3 and 54% more 22:6n-3 in the liver, as well as a 114% higher n-3/n-6 ratio than control piglets. Piglets suckling from sows consuming a high-18:3n-3 diet also had 24% more 22:6n-3 and a 33% higher n-3/n-6 ratio in the brain compared to control piglets. A high 18:3n-3 intake in the sow increases not only the 18:3n-3 but also the 22:6n-3 content of sow's milk and the tissues of the suckling piglet.  相似文献   

11.

Background

We evaluated the effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids enriched fish oil (FO) on nutritional and immunological parameters of treatment naïve breast cancer patients.

Methods

In a randomized double blind controlled trial, the FO group (FG) patients were supplemented with 2 g/ day of FO concentrate containing 1.8 g of n-3 fatty acids during 30 days. The placebo group (PG) received 2 g/ day of mineral oil. At baseline and after the intervention, plasma levels of n-3 fatty acids, dietary intake, weight, body composition, biochemical and immunological markers were assessed.

Results

At the end of the intervention period, no between group differences were observed regarding anthropometric parameters. There was a significant increase in the plasma phospholipid EPA (p = 0.004), DHA (p = 0.007) of the FG patients. In FG patients the percentages of peripheral blood CD4+ T lymphocytes and serum high sensitivity C-reactive protein (hsCRP) levels were maintained while in PG patients there was a significant increase in hsCRP (p = 0.024). We also observed a significant reduction in the percentage of CD4+ T lymphocytes in the peripheral blood (p = 0.042) of PG patients. No changes in serum proinflammatory cytokine and prostaglandin E2 levels were observed.

Conclusions

Supplementation of newly diagnosed breast cancer patients with EPA and DHA led to a significant change in the composition of plasma fatty acids, maintained the level of CD4+ T cells and serum levels of hsCRP, suggestive of a beneficial effect on the immune system and less active inflammatory response.

Trial registration

Brazilian Clinical Trials Registry (REBEC): RBR-2b2hqh. Registered 29 April 2013, retrospectively registered.
  相似文献   

12.
This systematic review and meta-analysis aimed to evaluate the effect of modifying 18-carbon PUFA [18-C PUFA: α-linolenic acid (ALA, 18∶3n−3) and linoleic acid (LA, 18∶2n−6)] in the diets of term and preterm infants on DHA (22∶6n−3) status, growth, and developmental outcomes. Only randomized controlled trials (RCT) involving formula-fed term and preterm infants, in which the 18-C PUFA composition of the formula was changed and growth or developmental outcomes were measured, were included. Differences were presented as control (standard formula) and treatment (18-C PUFA-supplemented formula). Primary analyses for term infants were 4 and 12 mon and for preterm infants 37–42 and 57 wk postmenstrual age. Five RCT involving term infants and three RCT involving preterm infants were included in the systematic review. Infants fed ALA-supplemented formula had significantly higher plasma and erythrocyte phospholipid DHA levels than control infants. There was no effect of ALA supplementation on the growth of preterm infants. In term infants, ALA supplementation was associated with increased weight and length at 12 mon, which was at least 4 mon after the end of dietary intervention. Developmental indices of term infants did not differ between groups. There was a transient improvement in the retinal function of preterm infants fed ALA-supplemented diets compared with controls. The findings suggest that ALA-supplemented diets improve the DHA status of infants. Further studies are needed to provide convincing evidence regarding the effects of ALA supplementation of formula on infant growth and development.  相似文献   

13.
Dietary fish oil supplements have been shown to have benefits in rheumatoid arthritis (RA), other inflammatory diseases, and in cardiovascular disease. As with any medical advice, variability will exist with regard to adherence and consequent biochemical or pharmacophysiologic effects. The aim was to explore the utility of plasma phospholipid EPA as a measure of n−3 PUFA intake and response to standardized therapeutic advice given in an outpatient or office practice setting, to increase dietary n−3 PUFA, including a fish oil supplement. Patients with early RA were given verbal and written advice to alter their dietary n−3 PUFA intake, including ingestion of 20 mL of bottled fish oil on juice daily. The advice included instructions to increase n−3 PUFA and to avoid foods rich in n−6 PUFA. Every 3 mon, blood samples were obtained for analysis of plasma phospholipid FA. Plasma phospholipid EPA was used as the primary index of n−3 PUFA intake. A diverse response was seen, with about one-third of patients achieving a substantial elevation of plasma phospholipid EPA over the 12-mon study period. A third had little change, with the remainder achieving intermediate levels. Data obtained longitudinally from individual patients indicated that substantial elevations of EPA (>5% total plasma phospholipid FA) could be maintained for more than 3 yr. Plasma phospholipid EPA is a convenient measure of adherence to advice to take a dietary n−3 PUFA-rich fish oil supplement. This measure may prove a useful adjunct to intention to treat analyses in determining the effect of dietary fish oil supplements on long-term outcomes in arthritis and other chronic inflammatory diseases. It may also provide a guide to the effectiveness of therapeutic and preventive messages designed to increase n−3 PUFA intake.  相似文献   

14.
Cleland LG  Gibson RA  Pedler J  James MJ 《Lipids》2005,40(10):995-998
Flaxseed, echium, and canola oils contain α-linolenic acid (18∶3n−3, ALA) in a range of concentrations. To examine their effect on elevating cardiac levels of long-chain n−3 FA, diets based on these n−3-containing vegetable oils were fed to rats for 4 wk. Sunflower oil, which contains little ALA, was a comparator. Despite canola oil having the lowest ALA content of the three n−3-containing vegetable oils, it was the most potent for elevating DHA (22∶6n−3) levels in rat hearts and plasma. However, the relative potencies of the dietary oils for elevation of EPA (20∶5n−3) in heart and plasma followed the same rank order as their ALA content, i.e., flaxseed>echium>canola>sunflower oil. This paradox may be explained by lower ALA intake leading to decreased competition for Δ6 desaturase activity between ALA and the 24∶5n−3 FA precursor to DHA formation.  相似文献   

15.
Ruyter B  Thomassen MS 《Lipids》1999,34(11):1167-1176
Oxidation, esterification, desaturation, and elongation of [1-14C]18∶2n−6 and [1-14C]18∶3n−3 were studied using hepatocytes from Atlantic salmon (Salmo salar I.) maintained on diets deficient in n−3 and n−6 polyunsaturated fatty acids (PUFA) or supplemented with n−3 PUFA. For both dietary groups, radioactivity from 18∶3n−3 was incoporated into lipid fractions two to three times faster than from 18∶2n−6, and essential fatty acids (FFA) deficiency doubled the incorporation. Oxidation to CO2 was very low and was independent of substrate or diet, whereas oxidation to acid-soluble products was stimulated by EFA deficiency. Products from 18∶2n−6 were mainly 18∶3n−6, 20∶3n−6, and 20∶4n−6, with minor amounts of 20∶2n−6 and 22∶5n−6. Products from 18∶3n−3 were mainly 18∶4n−3, 20∶5n−3, and 22∶6n−3, with small amounts of 20∶3n−3. The percentage of 22∶6n−3 in the polar lipid fraction of EFA-deficient hepatocytes was fourfold higher than in n−3 PUFA-supplemented cells. This correlated well with our other results obtained after abdominal injection of [1-14C]18∶3n−3 and [1-14C]18∶2n−6. In hepatocytes incubated with [4,5-3H]-22∶6n−3, 20∶5n−3 was the main product. This retrocon-version was increased by EFA deficiency, as was peroxisomal β-oxidation activity. This study shows that 18∶2n−6 and 18∶3n−3 can be elongated and desaturated in Atlantic salmon liver, and that this conversion and the activity of retroconversion of very long chain PUFA is markedly enhanced by FFA deficiency.  相似文献   

16.
Maternal smoking during pregnancy has been associated with a reduced content of n−3 long-chain PUFA (LC-PUFA) in breast milk, thereby reducing the intake of key nutrients by the infants. We postulated that the mammary gland is affected by maternal smoking in the process of n−3 LC-PUFA secretion into milk. This prompted us to investigate the effects of cigarette smoke on the synthesis of n−3 LC-PUFA in vitro by using a line of healthy epithelial cells from the human mammary gland, MCF-10A. Cells were exposed to cigarette smoke under controlled conditions by adding to the medium aliquots of horse serum containing smoke components, as analyzed by GC-MS. The major findings concern the inhibition of both the conversion of the precursor 14C-ALA (α-linolenic acid) to n−3 LC-PUFA and of the Δ5 desaturation step (assessed by HPLC analysis with radiodetection of n−3 FAME) following exposure to minimal doses of smoke-enriched serum, and the dose-dependent relationship of these effects. The data indicate that exposure to cigarette smoke negatively affects the synthesis of n−3 LC-PUFA from the precursor in mammary gland cells.  相似文献   

17.
The fatty acid composition of plasma cholesteryl esters, plasma phospholipids, red blood cell (RBC) membrane phosphatidylcholine (corresponding to the outer membrane leaflet), and phosphatidylethanolamine (corresponding to the inner membrane leaflet) was investigated in weanling guinea pigs fed with diets of cacao (saturated fatty acids), sunflower oil [n−6 polyunsaturated fatty acids (PUFA)] or fish oil (n−3 PUFA) for 20 wk. RBC deformation was measured by means of a cell-transit analyzer (filtration) and a cone-plate rheoscope. The contents of saturated fatty acids in plasma phospholipids and RBC membrane leaflets were similar in all three groups. Diets with sunflower oil resulted in a high content of linoleic acid in plasma cholesteryl esters and in the outer leaflet of RBC membranes. Fatty acids of fish oil were mainly incorporated in plasma phospholipids and in the inner leaflet of RBC membranes. The arachidonic acid content was high in all groups in the plasma phospholipids and in the inner leaflet. The n−6 and n−3 PUFA were mainly incorporated in the inner leaflet. In all groups the polyunsaturated/saturated fatty acid ratio and the total PUFA content were similar in the inner RBC membrane. The RBC filtration times and the RBC deformation indices were not affected by the dietary treatment.  相似文献   

18.
Synthesis of docosahexaenoic acid (DHA) from its metabolic precursors contributes to membrane incorporation of this FA within the central nervous system. Although cultured neural cells are able to produce DHA, the membrane DHA contents resulting from metabolic conversion do not match the high values of those resulting from supplementation with preformed DHA. We have examined whether the DHA precursors down-regulate the incorporation of newly formed DHA within human neuroblastoma cells. SH-SY5Y cells were incubated with gradual doses of alpha-linolenic acid (alpha-LNA), EPA, or docosapentaenoic acid (DPA), and the incorporation of DHA into ethanolamine glycerophospholipids was analyzed as a reflection of synthesizing activity. The incorporation of EPA, DPA, and preformed DHA followed a dose-response saturating curve, whereas that of DHA synthesized either from alpha-LNA, EPA, or DPA peaked at concentrations of precursors below 15-30 microM and sharply decreased with higher doses. The mRNA encoding for six FA metabolism genes were quantified using real-time PCR. Two enzymes of the peroxisomal beta-oxidation, L-bifunctional protein and peroxisomal acyl-CoA oxidase, were expressed at lower levels than fatty acyl-CoA ligase 3 (FACL3) and delta6-desaturase (delta6-D). The delta6-D mRNA slightly increased between 16 and 48 h of culture, and this effect was abolished in the presence of 70 microM EPA. In contrast, the EPA treatment resulted in a time-dependent increase of FACL3 mRNA. The terminal step of DHA synthesis seems to form a "metabolic bottleneck," resulting in accretion of EPA and DPA when the precursor concentration exceeds a specific threshold value. We conclude that the critical precursor- concentration window of responsiveness may originate from the low basal expression level of peroxisomal enzymes.  相似文献   

19.
The susceptibility of major plasma lipoproteins to lipoperoxidation was studied in relation to the FA composition of their neutral and polar lipids in steers given PUFA-rich diets. Two trials used, respectively, 18 (“sunflower” experiment, S) or 24 (“linseed” experiment, L) crossbred Salers x Charolais steers. Each involved three dietary treatments over a 70-d period: a control diet (CS or CL diets) consisting of hay and concentrate, or the same diet supplemented with oilseeds (4% diet dry matter) fed either as seeds (SS or LS diets) or continuously infused into the duodenum (ISO or ILO diets). Compared with control diets, ISO and ILO treatments tended to decrease the resistance time of LDL and HDL classes to peroxidation, mainly owing to the enrichment of their polar and neutral lipids with PUFA. With diets SS and LS, sensitivity of major lipoprotein classes (LDL, light and heavy HDL) was not affected because ruminal hydrogenation of dietary PUFA decreased their incorporation into lipoparticles. ISO and ILO treatments induced a more important production of conjugated dienes and hydroperoxides generated by peroxidation in the three lipoprotein classes due to the higher amounts of PUFA esterified in lipids of the core and the hydrophilic envelope of particles. The production of malondialdehyde (MDA) increased in steers fed linseed supplements, indicating that MDA production did not occur with linoleic acid provided by sunflower oil supplements. Thus, plasma peroxidation of PUFA generates toxic products in steers fed diets supplemented with PUFA and can be deleterious for the health of the animal during long-term treatment.  相似文献   

20.
Artificially reared infant rats were used to determine the effects of long-chain polyunsaturated fatty acid (LCP-UFA) supplementation on blood and tissue concentrations of arachidonic acid (AA) and docosahexaenoic acid (DHA). Beginning at 7 d of age, infant rats were fed for 10 d with rat milk formulas supplemented with AA at 0,0.5 and 1.0%, or supplemented with DHA at 0,0.5 and 1.0% of total fatty acid. The supplementation of AA increased accretion of the fatty acid in tissue and blood phospholipids with a maximum increase of 9% in brain, 15% in liver, 25% in erythrocytes, and 43% in plasma above the values of unsupplemented infant rats. Rat milk formula containing 1.0% of AA had no added benefits over that containing 0.5% of AA. The supplementation of DHA increased phospholipid DHA by a maximum of 24% in brain, 87% in liver, 54% in erythrocytes, and 360% in plasma above the unsupplemented control. The increase in tissue and blood DHA was concentration-dependent on formula fatty acid. Brain phosphatidylcholine and phosphatidylethanolamine were similarly enriched with AA and DHA by supplementation of the corresponding fatty acids. In general the observed increase of AA was accompanied by a decrease in 16:0, 18:1n−9, and/or 18:2n−6, whereas the increased DHA was associated with a reduction of 18:1n−9, 18:2n−6, and/or 20:4n−6. Clearly, infant rats were more responsive to DHA than AA supplementation, suggesting a great potential of dietary manipulation to alter tissue DHA concentrations. However, the supplementation of DHA significantly decreased tissue and blood AA/DHA ratios (wt%/wt%), whereas there was little or no change in the ratio by AA supplementation. Although the physiological implications of the levels of AA and DHA, and AA/DHA ratios achieved under the present experimental conditions are not readily known, the findings suggest that artificial rearing could provide a suitable model to investigate LCPUFA requirements using various sources of AA and DHA in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号