首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 839 毫秒
1.
驱动元件PZT片和传感元件PVDF膜粘贴于自由梁表面 ,通过测试压电增益 ,试验获取梁中不同缺陷尺寸下的固有频率。根据固有频率的变化 ,实现缺陷的识别。梁中的缺陷采用等效线性弹簧模拟 ,描绘出不同模态下刚度与缺陷可能位置曲线。根据曲线的交点 ,得出缺陷位置与尺寸。相比于实际的缺陷位置与尺寸 ,自由梁弯曲激振下识别的结果满足一定的精度  相似文献   

2.
梁内缺陷识别的反分析方法   总被引:2,自引:0,他引:2  
对梁的缺陷识别问题进行了研究,利用阻尼最小二乘法建立了一种识别梁缺陷的方法,该方法根据梁横向振动的固有频率变化识别缺陷区域的大小,位置和缺陷区域内的一些物性参数,算例表明该方法的有效性。  相似文献   

3.
针对识别门式起重机主梁结构缺陷的问题,将移动载荷法应用到结构缺陷识别中。通过三维建模软件UG,建立了单主梁门式起重机的整机模型,在Ansa中形成其有限元模型并进行了网格划分,最后基于有限元分析软件ANSYS对质量为100 kg载重物在起重机主梁上移动的工况进行了模拟,得到了4种不同缺陷尺寸的模型在该工况下特定振型的固有频率曲线。研究结果表明,缺陷尺寸和载重物离开缺陷位置的距离是影响起重机特定振型固有频率的两大关键因素,该结果为起重机无损检测提供了重要依据。  相似文献   

4.
基于结构振动波传播理论,讨论了在简谐力作用下,裂纹简支梁的弯曲波动解。为了描述由裂纹引起的梁中波传播的不连续特性,引入弯曲弹簧模型来模拟裂纹,并在此基础上提出了利用梁结构驱动点阻抗特性的裂纹损伤识别方法。以一裂纹简支梁为例进行了数值分析,得到了裂纹简支梁的驱动点阻抗特性曲线。从该曲线可以发现,梁的第一阶谐振频率和反谐振频率都随裂纹的出现而减小,并且频率减少量随裂纹尺寸的增大而增加。结合裂纹梁第一阶谐振频率与驱动点位置关系曲线,利用曲线上出现的突变点,准确地识别了梁的损伤状态和裂纹损伤位置。最后,利用已识别的裂纹位置和第一阶固有频率定量地识别了裂纹尺寸。  相似文献   

5.
工字截面梁轨结构裂纹损伤的小波有限元定量诊断   总被引:1,自引:0,他引:1  
研究工字截面梁轨结构裂纹定量识别中的正反问题,即通过裂纹位置和深度求解结构的固有频率以及利用结构的固有频率,识别裂纹位置和深度.裂纹被看作为一扭转线弹簧,利用工字梁裂纹应力强度因子推导出线弹簧刚度,构造出结构的小波有限元刚度矩阵和质量矩阵,从而获得裂纹结构的前3阶固有频率.通过行列式变换,将反问题求解简化为只含线弹簧刚度一个未知数的一元二次方程求根问题,分别做出以不同固有频率作为输入值时裂纹位置与裂纹深度之间的解曲线,曲线交点预测出裂纹的位置与深度,试验结果验证算法的有效性.  相似文献   

6.
针对板梁结构的微小缺陷识别问题,对板梁结构的模态振型和模态频率进行了研究,提出了基于小波变换和移动质量法的板梁结构缺陷识别方法。对"质量块在结构表面移动过程中,质量块-板梁耦合结构的固有频率会随移动位置的变化而改变,且当质量块位于结构缺陷位置时,固有频率会发生微小突变"的性质进行了研究,得到了随质量块位置变化的结构频移曲面;通过改变辅助质量块的位置来探测结构的动态特性,提出了应用离散小波变换分解板梁结构的振型和频移曲面的方法,提取结构的微弱缺陷信息,为板梁结构的微小缺陷检测提供了理论支撑。研究结果表明:该方法能够有效地识别板梁结构的微小缺陷,为以后的工程应用提供了一种实用的新检测方法。  相似文献   

7.
受弯梁中开裂纹的位置识别与分析   总被引:1,自引:0,他引:1  
利用有限元计算判定受弯梁中开裂纹的位置 ,从中得出 :同正常梁相比 ,裂纹梁的固有频率与振型的变化不但与裂纹深度而且与裂纹位置有关 ,因而 ,通过裂纹梁低阶固有频率及振型的变化情况可以判定裂纹的位置。对于裂纹较浅的情况 ,直接利用振型与固有频率的变化很难判定裂纹的位置 ,必须借用一些特征参数来提高识别的敏感性 ,这样 ,裂纹梁中早期裂纹的识别也是可行的  相似文献   

8.
本文以含多个压电元件的悬臂梁为例,基于Bernoulli-Euler梁的阶梯折算法,结合压电智能悬臂梁段的等效弹性模量理论,计算了多个压电元件的悬臂梁的固有频率和振型,并与有限元和等截面梁的计算结果进行比较。计算分析表明,压电材料尺寸和位置变化对智能悬臂梁结构的横向振动特性具有显著的影响,分析结论对高速飞行器结构设计和主动振动控制中压电元件的优化布置有实用价值。  相似文献   

9.
作为梁类结构动力学特性分析和损伤识别的重要参数之一,裂纹局部柔度可以有效地反映结构的损伤程度和特征。通过对梁结构进行动力学建模和振动测试,给出了一种基于固有频率的圆截面梁结构中裂纹局部柔度的测量方法。首先为了获得裂纹梁故障数据库,建立了圆形截面裂纹梁结构的有限元模型,进而绘制结构的前两阶固有频率影响曲面。然后对裂纹梁结构进行振动测试,采用测试所得的结构前两阶固有频率去截取结构的前两阶固有频率影响曲面,绘制出裂纹位置和裂纹局部柔度所对应的结构前两阶固有频率影响曲线,利用其交点测量出裂纹局部柔度。这种方法可以被用于圆截面梁中不同类型和形状裂纹的局部柔度测量。  相似文献   

10.
为了解决装配式钢桥在结构损伤下的识别问题,选取了归一化主模态差作为标示量,对装配式钢桥导梁结构进行损伤识别。通过实测模型与有限元分析模型的固有频率和对应振型比较,验证桥梁导梁有限元模型的正确性;提出了运用归一化主模态差曲线图识别桥梁导梁损伤的方法,利用结构损伤时归一化主模态比无损伤时的归一化主模态刚度下降,损伤节点处振幅相对于正常状态数值增大,产生归一化主模态差正向突变来反映结构局部损伤的位置和损伤程度。通过模拟六种工况得到结构损伤部位会引起主模态差曲线的正向突变;并且损伤程度越重,对应的归一化主模态差越大。验证了损伤状态和正常状态之间的主模态差曲线可以判别装配式钢桥导梁的损伤位置和损伤严重程度。  相似文献   

11.
研究基于模型的结构裂纹故障诊断中的正反问题,即求解含裂纹参数结构的固有频率以及利用实测固有频率,定量识别裂纹参数。构造用于求解正问题的一维区间B样条小波裂纹单元,通过求解裂纹结构有限元模型,绘制以裂纹等效刚度与裂纹位置为变量的三阶频响函数解曲线,将实际测出的系统前三阶固有频率作为输入,根据曲线的交点定量预示出裂纹的位置和深度。实验研究表明,文中构造的区间B样条小波裂纹单元有效克服了传统有限元分析在求解裂纹奇异性问题时存在的效率低、精度差甚至难以收敛到正确解的缺陷,同时具有足够的辨识精度,为早期裂纹故障定量诊断提供新方法。  相似文献   

12.
结构中裂缝的存在使其模态参数发生改变 ,如局部刚度减小、阻尼增大、固有频率降低。把裂缝梁模拟成由扭曲弹簧连接 ,并对其前三阶固有频率的变化与裂缝位置和深度之间的关系进行计算和分析 ;利用特征方程以及前三阶固有频率 ,通过作图法对裂缝参数进行识别。识别结果证明 ,这种方法精度较高、简单可行 ,可用于机械工程实时监测。  相似文献   

13.
基于区间B样条小波有限元的转子裂纹定量识别   总被引:4,自引:0,他引:4  
研究一种基于区间B样条小波有限元的转子横向裂纹定量识别方法.构造包含转动惯量影响的区间B样条小波Rayleigh梁单元,高精度求解裂纹转子前三阶固有频率,获得裂纹相对位置和相对深度作为变量的固有频率解曲面.然后将实测的裂纹转子前三阶固有频率作为裂纹识别问题的输入,利用三条等高线的交点定量识别出裂纹存在的相对位置和相对深度.数值仿真和试验研究结果表明,该方法鲁棒性强,单元数量少,辨识精度和效率高,为转子系统裂纹定量识别提供了新方法.  相似文献   

14.
An analytical approach for crack identification procedure in uniform beams with an open edge crack, based on bending vibration measurements, is developed in this research. The cracked beam is modeled as two segments connected by a rotational mass-less linear elastic spring with sectional flexibility, and each segment of the continuous beam is assumed to obey Timoshenko beam theory. The method is based on the assumption that the equivalent spring stiffness does not depend on the frequency of vibration, and may be obtained from fracture mechanics. Six various boundary conditions (i.e., simply supported, simple–clamped, clamped–clamped, simple–free shear, clamped–free shear, and cantilever beam) are considered in this research. Considering appropriate compatibility requirements at the cracked section and the corresponding boundary conditions, closed-form expressions for the characteristic equation of each of the six cracked beams are reached. The results provide simple expressions for the characteristic equations, which are functions of circular natural frequencies, crack location, and crack depth. Methods for solving forward solutions (i.e., determination of natural frequencies of beams knowing the crack parameters) are discussed and verified through a large number of finite-element analyses. By knowing the natural frequencies in bending vibrations, it is possible to study the inverse problem in which the crack location and the sectional flexibility may be determined using the characteristic equation. The crack depth is then computed using the relationship between the sectional flexibility and the crack depth. The proposed analytical method is also validated using numerical studies on cracked beam examples with different boundary conditions. There is quite encouraging agreement between the results of the present study and those numerically obtained by the finite-element method.  相似文献   

15.
A method to detect a crack in a beam is presented. The crack is not modeled as a massless rotational spring, and the forward problem is solved for the natural frequencies using the boundary element method. The inverse problem is solved iteratively for the crack location and the crack size by the Newton-Raphson method. The present crack identification procedure is applied to the simulation cases which use the experimentally measured natural frequencies as inputs, and the detected crack parameters are in good agreements with the actual ones. The present method enables one to detect a crack in a beam without the help of the massless rotational spring model.  相似文献   

16.
The presence of cracks in the rotor is one of the most dangerous and critical defects for rotating machinery. Defect of fatigue cracks may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. With the method of finite element, vibration behavior of cracked rotors and crack detection was received considerable attention in the academic and engineering field. Various researchers studied the response of a cracked rotor and most of them are focused on the crack detection based on vibration behavior of cracked rotors. But it is often difficult to identify the crack parameters quantitatively. Second generation wavelets (SGW) finite element has good ability in modal analysis for singularity problems like a cracked rotor. Based on the fact that the feature of SGW could be designed depending on applications, a multiresolution finite element method is presented. The new model of SGW beam element is constructed. The first three natural frequencies of the rotor with different crack location and size were solved with SGW beam elements, and the database for crack diagnosis is obtained. The first three metrical natural frequencies are employed as inputs of the database and the intersection of the three frequencies contour lines predicted the normalized crack location and size. With the Bently RK4 rotor test rig, rotors with different crack location and size are tested and diagnosed. The experimental results denote the cracks quantitative identification method has higher identification precision. With SGW finite element method, a novel method is presented that has higher precision and faster computing speed to identify the crack location and size.  相似文献   

17.
In this paper, a crack detection approach is presented for detecting depth and location of cracks in beam-like structures. For this purpose, a new beam element with an arbitrary number of embedded transverse edge cracks, in arbitrary positions of beam element with any depth, is derived. The components of the stiffness matrix for the cracked element are computed using the conjugate beam concept and Betti’s theorem, and finally represented in closed-form expressions. The proposed beam element is efficiently employed for solving forward problem (i.e., to gain precise natural frequencies and mode shapes of the beam knowing the cracks’ characteristics). To validate the proposed element, results obtained by new element are compared with two-dimensional (2D) finite element results and available experimental measurements. Moreover, by knowing the natural frequencies and mode shapes, an inverse problem is established in which the location and depth of cracks are determined. In the inverse approach, an optimization problem based on the new finite element and genetic algorithms (GAs) is solved to search the solution. It is shown that the present algorithm is able to identify various crack configurations in a cracked beam. The proposed approach is verified through a cracked beam containing various cracks with different depths.  相似文献   

18.
A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.  相似文献   

19.
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号