首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Aromatic polyamides were obtained by the direct polycondensation reaction of a new monomer containing a 6,6'-sulfonediquinoline unit with various aromatic diamines. The polymers were characterised by elemental, infrared, wide angle X-ray diffraction and thermal analysis. The polyamides, possessed inherent viscosities in the range 0.24 – 0.43 dl g−1, 10% weight loss in nitrogen and air above 410°C and glass transition temperatures in the range 170–220°C. The polyamides obtained by reaction with 4,4'-methylenedianiline and 4,4'-sulfonyldianiline were soluble on heating in N-methyl-2-pyrrolidinone and partially soluble in dimethylacetamide. Solubility and thermal properties of copolyamides, prepared from the reaction of 4,4'-oxydianiline with the new monomer and the 4,4'-dicarboxydiphenyl sulfone, were also studied. Received: 5 October 1998/Revised version: 19 April 1999/Accepted: 19 April 1999  相似文献   

2.
Three aromatic diamines, 2,2′-diiodo-4,4′-oxydianiline (DI-ODA 2), 2,2′-bis[p-(trifluoromethyl)phenyl]-4,4′-oxydianiline (BTFP-ODA 3) and 2,8-diaminodibenzofuran (DADBF 5) were synthesized by using 4,4-oxydianiline (4,4′-ODA) as the starting material. New aromatic polyamides 6, 7 and 8 were prepared from these three diamines and six commercially available aromatic diacids by direct polycondensation, respectively. Polyamides 6 and 7 contained bulky iodide and p-trifluoromethylphenyl substitutents that would hinder the chain packing and increase the free volume. They exhibited good optical transparency in visible light region and showed excellent solubility in organic solvents such as DMSO, DMAc, DMF and NMP. Polyamides 8 containing planar dibenzofuran moieties had the highest glass transition temperatures and decomposition temperatures among these polyamides. Polyamides 6 had the lowest decomposition temperatures due to the presence of weak carbon–iodine bond. All of these polyamides showed amorphous nature evidenced by wide angle X-ray diffraction. No endothermic peaks were observed from DSC thermograms up to their decomposition temperatures. High optical transparency and excellent solubility combined with good thermal stability make these polyamides attractive for potential soft electronics applications.  相似文献   

3.
A series of novel polycyclic aliphatic polyamides was synthesized by direct polycondensation of the 1,6-diamantane dicarboxylic acid with various alicyclic diamines in N-methyl–2–pyrrolidone (NMP) containing lithium chloride, using triphenyl phosphite and pyridine as a condensing agent. The polyamides had inherent viscosities of 0.33–0.49 dL/g. The glass transition temperatures of the these polyamides were in the range of 200–220°C, and the 5% weight loss temperatures were in the range were 290–319°C in nitrogen. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
A series of aromatic polyamides were synthesized by direct polycondensation of 4,4-oxydibenzoic acid with various aromatic diamines inN-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride, using triphenyl phosphite and pyridine as condensing agents. The resultant polyamides had inherent viscosities of 0.21-1.48 dL/g. Most of the polymers were organo-soluble and could be solution-cast into flexible and strong films. The glass transition temperatures (Tgs) of most polyamides could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range of 170–275 °C. Thermogravi metric data of these polymers indicated that most of the polyamides showed no significant weight loss before 450 °C in either air or nitrogen atmospheres.  相似文献   

5.
Polyamides were synthesized by interfacial polycondensation of 2,3‐bis(4‐chloroformylphenyl)quinoxaline (BCFPQ) and several aliphatic diamines using a phase transfer catalyst, and their adhesive property for stainless steel was investigated. The inherent viscosity of the obtained polyamides ranged from 0.37 to 1.24 dL g−1. The glass transition temperatures of the polyamides ranged between 154 and 201°C, and their thermal decomposition temperatures were above 450°C. The polyamides were soluble in several organic solvents, including m‐cresol, N‐methyl‐2‐pyrrolidone (NMP), and formic acid. The adhesive property for stainless steel was examined by a standard tensile test. One member of the series, polyamide P8, derived from BCFPQ and 1,8‐octanediamine, displayed high tensile strength with values of 232 kgf cm−2 at 20°C, 173 kgf cm−2 at 120°C, and 137 kgf cm−2 at 180°C. Thus, the tensile strength of P8 decreased at 180°C, but the decrease was much smaller than that of an epoxy resin in wide use as a metal adhesive. Heat distortion temperature, measured by thermal mechanical analysis, of P8 was 191°C. This suggested that P8 possessed high thermal resistance in metal adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1366–1370, 1999  相似文献   

6.
A unsymmetrical and kink non-coplanar heterocyclic dicarboxylic acid monomer, 4-[4-(4-carboxy phenoxy)-naphthyl]-2-(4-carboxyphenyl)phthalazin-1-one (3) was successfully synthesized with high purity and high yields. A series of novel polyamides containing phthalazinone were prepared from the newly synthesized dicarboxylic acid with various aromatic diamines by means of the phosphorylation polycondensation reaction. Molecular weights of the obtained polyamides were evaluated viscometrically, and the inherent viscosities (ηinh) measured were in the range 0.54–0.69 dL/g. These polyamides were amorphous and readily soluble in many organic solvents, such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimetheylformamide, dimethyl sulfoxide, pyridine, and m-cresol etc., and they could easily be solution-cast into transparent, flexible films with good mechanical properties, with tensile strength ranging from 63.9 to 81.6 MPa and elongation at break from 7.2 to 11.4%. These polymers still kept good thermal stability with high-glass transition temperatures in the range of 283–338 °C, and the decomposition temperature in nitrogen for a 10% weight-loss temperatures in excess of 490 °C, and char yield at 800 °C in nitrogen ranged from 56 to 63%. Furthermore, the polyamides films were essentially colorless; their cut-off wavelengths were between 365 and 379 nm.  相似文献   

7.
A series of polyamides and poly(amide-imide)s were prepared by the direct polycondensation of 4,4′-[sulfonylbis(1,4-phenyleneoxy)]dianiline or 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenyleneoxy)]dianiline with aromatic dicarboxylic acids and phthalimide unit-bearing dicarboxylic acids in a N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride using triphenyl phosphite and pyridine as condensing agents. The inherent viscosities of the resulting polymers were above 0.45 dL/g and up to 1.70 dL/g. Except for the polyamides derived from terephthalic acid and 4,4′-biphenyldicarboxylic acid, all the other polyamides and all poly(amide-imide)s were readily soluble in polar organic solvents such as NMP, N, N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and m-cresol, and afforded transparent and tough films by solution-casting. Most of the polymers showed distinct glass transition on their differential scanning calorimetry (DSC) traces and their glass transition temperatures (Tg) stayed between 140–264 °C. The methyl-substituted polymers showed higher Tgs than the corresponding unsubstituted counterparts. The results of the thermogravimetry analysis (TGA) revealed that all the methyl-substituted polymers showed lower initial decomposition temperatures than the unsubstituted ones.  相似文献   

8.
A series of optically active polyamides containing di‐O‐methyl‐L ‐tartaryl moieties in the main chain were synthesized by polycondensation of di‐O‐methyl‐L ‐tartaryl chloride 5 with diamines and characterized by gel permeation chromatography, UV–vis, circular dichroism (CD), IR, and NMR spectroscopies. The polycondensation reaction could be carried out under mild conditions and the reaction time was short (2–3 h). The key monomer 5 prepared from L ‐tartaric acid via esterification, etherification, hydrolysis, and chlorination was easily purified by vacuum sublimation. These polyamides with number average molecular weights ranging from 14,000 to 35,000, displayed large optical activity in dimethyl sulfoxide solution, and their specific optical rotations oscillated between 87.2° and 210.7° depending on the structures of the diamines. The glass transition temperatures of these polyamides were in the range of 106–191°C, and the 10% mass loss occurred at temperature above 300°C. The polyamides derived from aromatic diamines exhibited higher Tg and thermal stability than those derived from aliphatic diamines. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
A number of polyamides based on 2,6-naphthalene dicarboxylic acid (NDA) and various aromatic diamines were synthesized in N-methyl pyrrolidone (NMP) containing lithium chloride (LiCl) or calcium chloride (CaCl2) by direct polycondensation using triphenyl phosphite and pyridine. The best reaction conditions for polycondensation were determined in terms of factors such as the amount of the solvency-promoting reagent such as LiCl or CaCl2 and the initial reactant concentration. Thus, almost all polyamides were obtained with inherent viscosities above 1.0 and up to 3.28 dL/g. Similarly, high molecular weight copolyamides with inherent viscosities of 1.76–3.61 dL/g were prepared from 4,4′-oxydianiline (ODA) and mixed dicarboxylic acids of NDA/terephthalic acid (TPA) or NDA/isophthalic acid (IPA). The solubility of NDA homopolyamides depended on the diamine components. The polyamides derived from meta-, sulfone-, or alkylene-linked diamine showed increased solubility. Copolymerization of ODA with NDA/IPA led to a significant increase in solubility, whereas with NDA/TPA, it gave a limited improvement. All the homopolyamides and copolyamides showed an amorphous X-ray diffraction pattern. Almost all the polymers soluble in aprotic solvents can be solution-cast into strong and tough films. Glass transition shifts of some NDA polyamides can be observed in the differential scanning calorimetry (DSC) curves ranging from 243 to 345°C. Most NDA/IPA–ODA copolyamides also showed clear transitions in the range of 255–268°C. In nitrogen, all the polymers showed no significant weight loss up to 400°C, and their 10% weight loss temperatures were recorded in the range of 434–541°C. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Summary Biocompatible and potentially biodegradable polyamides (PAs) containing in the chain both peptide bonds and hydrophilic triethyleneoxide segments have been prepared by interfacial polycondensation of sebacoyl dichloride with amide-diamines derived from the 4,7,10-trioxa-1,13-tridecanediamine and α-aminoacids such as glycine, L-valine and L-phenylalanine. These PAs exhibit moderate inherent viscosity values and show limited solubilities in CHCl3, DMF and DMSO. 1H-NMR and FTIR spectroscopy analysis confirmed the expected structures. DSC and X-rays diffraction spectra indicated crystallinity degrees from 19 to 31%. The melting temperatures range between 135–238 °C. Liquid water absorption measurements indicate a high equilibrium weight-uptake when a glycine residue is present in the amide-diamine moiety. In vitro tests carried out using cultures of human fibroblasts showed the biocompatibility of the prepared PAs. Received: 28 March 1999/Revised version: 27 July 1999/Accepted: 8 September 1999  相似文献   

11.
Seven polyamides containing s-triazine rings in the main chain were synthesized by high temperature polycondensation of 2-(β-naphthylamino)-4,6-bis(naphthoxy-3-carbonyl chloride)-s-triazine [NANCCT] with various aromatic diamines such as 4,4′-diaminodiphenyl [DADP], 4,4′-diaminodiphenylamide [DADPA], 4,4′-diaminodiphenylsulphone [DADPS], 4,4′-diaminodiphenylsulphonamide [DADPSA], 4,4′-diaminodiphenyl methane [DADPM], 2,4-diamino toluene [DAT] and p-phenylene diamine [PPDA]. All the polyamides were characterized by solubility tests, density measurements, viscosity measurements, IR spectra, NMR spectra, and thermogravimetric analysis. The polyamides had inherent viscosities in the range 0.88–1.16 g/dL in N,N′-dimethyl formamide at room temperature (30°C). All the polyamides showed good thermal stability at high temperatures and most of them were soluble readily at room temperature in polar solvents.  相似文献   

12.
Two multiring, flexible dicarboxylic acids, 4,4'-[isopropylidenebis(1,4-phenylene)dioxy] dibenzoic acid (3) and 4,4'-[hexafluoroisopropylidenebis(1,4-phenylene)dioxyldibenzoic acid (3-F), were synthesized through the nucleophilic fluorodisplacement ofp-fluorobenzonitrile by the dipotassium bisphenolates of the corresponding bisphenol precursors followed by alkaline hydrolysis. Two series of aromatic polyamides 5a–k and 5a–k-F containing both ether and isopropylidene or hexafluoroisopropylidene linkages between phenylene units were prepared by direct polycondensation of diacids 3 and 3-F, respectively, with various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in aN-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides of 5 and 5-F series have inherent viscosities of 0.92–1.29 dL/g and 0.60–0.92 dL/g, respectively. Most of these polymers are amorphous in nature, are soluble in polar solvents such as NMP,N,N-dimethylacetamide (DMAc), andN,N dimethylformamide (DMF), and can afford tough and flexible films by solution casting. Differential scanning calorimetry shows Tgs ranging from 175 to 239 °C for the 5 series polyamides and ranging from 172 to 267 °C for the 5-F series polymers. Both classes of polyamides show good thermal stability, with the 5-F series polyamides being more stable.  相似文献   

13.
Aromatic polyamides containing thioether units were synthesized by interfacial polycondensation of 4,4′‐thiodibenzoyl chloride (or 4,4′‐bis(4‐chloroformylphenylthio)benzene) with aromatic diamines containing a nitrile unit. Their structure was established using 1H NMR and Fourier transform infrared spectroscopy. The inherent viscosities of the polyamides prepared with optimum synthesis conditions were in the range 0.71–0.84 dL g?1. These polyamides showed excellent thermal properties with glass transition temperatures of 210.5–219.6 °C, melting temperatures of 313.8–315.0 °C and initial degradation temperatures of 440–459 °C. They could be processed by melting due to their relatively wide processing window. Their tensile strengths were 71.3–79.1 MPa, water absorption was 0.17–0.22 wt%, and melt flowability was in the range 64.5 to 315.2 Pa s and 68.5 to 422.3 Pa s at different shear rates. At the same time, they were soluble in aprotic solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide and dimethylsulfoxide. The results suggest that these aromatic polyamides containing thioether units represent a promising type of heat‐resistant and processable engineering plastic. © 2012 Society of Chemical Industry  相似文献   

14.
Summary A series of polyphosphonates were synthesized by base promoted liquid-vapor interfacial polycondensation of various alkyl (aryl) phosphonic dichlorides (methylphosphonic dichloride (MPD), cyclohexylphosphonic dichloride (CPD) and phenylphosphonic dichloride (PPD)) with different bisphenols (hydroquinone (HQ), bisphenol A (BA), 4,4 - biphenol (BP), 1,5-naphtalenediol (ND) and 4,4 - sulfonyldiphenol (SD)). The polyphosphonates were characterized by infrared (IR) and proton magnetic resonance (1H-NMR) spectroscopy. Yields in the range of 20–80% and Mn of ∼ 8500–35000 were obtained. DSC measurements show Tg in the range 95°–148°C. These polymers are soluble in solvents such as N,N-dimethylformamide, tetrahydrofuran and chloroform. Polyphosphonates were stable up 240°–300°C in air atmosphere. Received: 11 March 2002 / Revised version: 29 May 2002 / Accepted: 12 June 2002  相似文献   

15.
Summary New dianhydrides having alkyloxy side chains were synthesized and polymerized with 4,4'-oxydianiline in NMP. Chemically cyclized polyimides were obtained with inherent viscosities of 0.30∼0.84 dL/g range. All the polymers were highly soluble in polar solvent such as NMP at room temperature. TGA pyrograms showed two-step degradation and in DSC thermograms the polymers exhibited Tgs between 124°C and 259°C. Wide-angle X-ray diffractograms revealed very low crystallinity and layered structure, which was better developed in the polymers with longer side chains Received: 16 October 2000/Accepted: 10 November 2000  相似文献   

16.
1,5-Bis(4-trimellitimido)naphthalene (II) was prepared by the condensation reaction of 1,5-naphthalenediamine and trimellitic anhydride. A series of aromatic poly(amide-imide)s (IV a–o) was synthesized by the direct polycondensation of the diimide-diacid (II) and various aromatic diamines (III a–o). The reaction utilized triphenyl phosphite and pyridine as condensing agents in the presence of calcium chloride in N-methyl-2-pyrrolidone (NMP). The inherent viscosities of the resulting poly(amide-imide)s were in the range of 0.55∼1.39 dL/g. These polymers were generally soluble in polar solvents, such as N,N-dimethylacetamide (DMAc), NMP, N,N-dimethylformamide (DMF). Flexible and tough poly(amide-imide) films were obtained by casting from a DMAc solution and had tensile strengths of 90∼145 MPa, elongations to break of 5∼13 %, and initial moduli of 2.29∼3.73 GPa. The glass transition temperatures of some poly(amide-imide)s were recorded in the range of 206∼218 °C, and most of the polymers did not show discernible glass transition on their DSC traces. The 10% weight loss temperatures were above 522 °C in nitrogen and above 474 °C in air atmosphere.  相似文献   

17.

Abstract  

Poly(aryl imino sulfone)s (PAISs) as novel high-performance polymers have been obtained by the condensation polymerization of 4,4′-dibromodiphenyl sulfone with different primary aromatic diamines via Palladium-catalyzed aryl amination reaction. The influence of the halogen-containing monomers, solvent, concentration, and temperature on the polycondensation reaction was investigated. The structure of polymers synthesized was characterized by means of FT–IR, NMR spectroscopy, and elemental analysis, the results showed an agreement with the proposed structure. Differential scanning calorimetry and thermal analysis measurements showed that polymers possessed high glass transition temperature (T g > 145 °C) and good thermal stability with high decomposition temperatures (T D > 450 °C). These novel polymers also exhibited good mechanical behaviors and good solubility.  相似文献   

18.
Interfacial polycondensation of 2,2′‐bis[2‐(5‐chloroformylfuryl)]propane with various diamines gave high yields of a novel series of furanic polyamides with high inherent viscosities. The properties of these polymers (Tg, surface energy, crystallinity, thermal stability) were assessed and examined in terms of the role of the specific structure of the bridging group borne by the diamines. Only three polyamides were partially crystalline, whereas all the others were amorphous. Thermogravimetric analysis revealed that thermal decomposition began above 300 °C in all instances. © 2001 Society of Chemical Industry  相似文献   

19.
Aromatic polyamides containing different numbers of p-oxyphenylene groups and different catenated positions in the benzene rings were prepared from terephthalic acid (TPA) and isophthalic acid (IPA) with various aryloxy-containing diamines by means of the phosphorylation polycondensation reaction. Most of the polyamides were moderately to highly crystalline, as indicated by X-ray diffraction and DSC measurements. Polyisophthalamides were readily soluble in polar amide-type solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Some non-crystalline polyamides could afford tough films by solution casting. Most polyisophthalamides revealed discernible glass transition on their DSC curves, and their Tg values were recorded in the range of 215–238 °C. No discernible glass transitions were observed for the polyamides of TPA by DSC. The thermal stability of these polymers did not show clear dependence on the structure of the diacid or the diamine. In addition, a series of polyamides having pendant groups was synthesized from the polycondensation of TPA and IPA with 1,4-bis(4-aminophenoxy)benzene and its derivatives with methyl, tert-butyl, or phenyl substituent on the central benzene ring. In most cases, the incorporation of pendant groups generally resulted in an enhanced solubility and a decreased Tg and crystallinity.  相似文献   

20.
Six new polyamides 5a‐f containing flexible trimethylene segments in the main chain were synthesized through the direct polycondensation reaction of 1,3‐(4‐carboxy phenoxy) propane 3 with six derivatives of aromatic diamines 4a‐f in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The polycondensation reaction produced a series of novel polyamides containing flexible trimethylene segments in the main chain in high yield with inherent viscosities between 0.32 and 0.68 dL/g. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by using thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG). The glass‐transition temperatures of these polyamides were recorded between 165 and 190°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 360 to 430°C under nitrogen. 1,3‐(4‐Carboxy phenoxy) propane 3 was prepared from the reaction of 4‐hydroxy benzoic acid 1 with 1,3‐dibromo propane 2 in the presence of NaOH solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号