首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the single machine scheduling problem to minimize the total weighted tardiness in the presence of sequence dependent setup. Firstly, a mathematical model is given to describe the problem formally. Since the problem is NP-hard, a general variable neighborhood search (GVNS) heuristic is proposed to solve it. Initial solution for the GVNS algorithm is obtained by using a constructive heuristic that is widely used in the literature for the problem. The proposed algorithm is tested on 120 benchmark instances. The results show that 37 out of 120 best known solutions in the literature are improved while 64 instances are solved equally. Next, the GVNS algorithm is applied to single machine scheduling problem with sequence dependent setup times to minimize the total tardiness problem without changing any implementation issues and the parameters of the GVNS algorithm. For this problem, 64 test instances are solved varying from small to large sizes. Among these 64 instances, 35 instances are solved to the optimality, 16 instances' best-known results are improved, and 6 instances are solved equally compared to the best-known results. Hence, it can be concluded that the GVNS algorithm is an effective, efficient and a robust algorithm for minimizing tardiness on a single machine in the presence of setup times.  相似文献   

2.
In this paper, a scatter search algorithm with improved component modules is proposed to solve the single machine total weighted tardiness problem with sequence-dependent setup times. For diversification generation module, both random strategy based heuristics and construction heuristic are adopted to generate the diversified population. For improvement module, variable neighborhood search based local searches are embedded into the algorithm to improve the trial solutions and the combined solutions. For reference set update module, the number of edges by which the two solutions differ from each other is counted to measure the diversification value between two solutions. We also propose a new strategy in which the length of the reference set could be adjusted adaptively to balance the computing time and solving ability. In addition, a discrete differential evolution operator is proposed with another two operators constitute the combination module to generate the new trial solutions with the solutions in the subsets. The proposed algorithm is tested on the 120 benchmark instances from the literature. Computational results indicate that the average relative percentage deviations of the improved algorithm from the ACO_AP, DPSO, DDE and GVNS are −5.16%, −3.33%, −1.81% and −0.08%, respectively. Comparing with the state-of-the-art and exact algorithms, the proposed algorithm can obtain 78 optimal solutions out of 120 instances within a reasonable computational time.  相似文献   

3.
Although the concept of just-in-time (JIT) production systems has been proposed for over two decades, it is still important in real-world production systems. In this paper, we consider minimizing the total weighted earliness and tardiness with a restrictive common due date in a single machine environment, which has been proved as an NP-hard problem. Due to the complexity of the problem, metaheuristics, including simulated annealing, genetic algorithm, tabu search, among others, have been proposed for searching good solutions in reasonable computation times. In this paper, we propose a hybrid metaheuristic that uses tabu search within variable neighborhood search (VNS/TS). There are several distinctive features in the VNS/TS algorithm, including different ratio of the two neighborhoods, generating five points simultaneously in a neighborhood, implementation of the B/F local search, and combination of TS with VNS. By examining the 280 benchmark problem instances, the algorithm shows an excellent performance in not only the solution quality but also the computation time. The results obtained are better than those reported previously in the literature.  相似文献   

4.
This paper considers the job-shop problem with release dates and due dates, with the objective of minimizing the total weighted tardiness. A genetic algorithm is combined with an iterated local search that uses a longest path approach on a disjunctive graph model. A design of experiments approach is employed to calibrate the parameters and operators of the algorithm. Previous studies on genetic algorithms for the job-shop problem point out that these algorithms are highly depended on the way the chromosomes are decoded. In this paper, we show that the efficiency of genetic algorithms does no longer depend on the schedule builder when an iterated local search is used. Computational experiments carried out on instances of the literature show the efficiency of the proposed algorithm.  相似文献   

5.
This paper attempts to solve a single machine‐scheduling problem, in which the objective function is to minimize the total weighted tardiness with different release dates of jobs. To address this scheduling problem, a heuristic scheduling algorithm is presented. A mathematical programming formulation is also formulated to validate the performance of the heuristic scheduling algorithm proposed herein. Experimental results show that the proposed heuristic algorithm can solve this problem rapidly and accurately. Overall, this algorithm can find the optimal solutions for 2200 out of 2400 randomly generated problems (91.67%). For the most complicated 20 job cases, it requires less than 0.0016 s to obtain an ultimate or even optimal solution. This heuristic scheduling algorithm can therefore efficiently solve this kind of problem.  相似文献   

6.
This paper considers the single machine scheduling problem with weighted quadratic tardiness costs. Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules (which are efficient and capable of providing adequate solutions for even quite large instances). A simple local search procedure which incorporates problem specific information is also proposed.The computational results show that the proposed metaheuristics clearly outperform the best of the existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution quality. Nevertheless, the iterated local search method provides the best solution, though at the expense of additional computational time. The exact opposite is true for the variable greedy procedure, while the genetic algorithm is a good all-around performer.  相似文献   

7.
The single machine scheduling problem with sequence-dependent setup times with the objective of minimizing the total weighted tardiness is a challenging problem due to its complexity, and has a huge number of applications in real production environments. In this paper, we propose a memetic algorithm that combines and extends several ideas from the literature, including a crossover operator that respects both the absolute and relative position of the tasks, a replacement strategy that improves the diversity of the population, and an effective but computationally expensive neighborhood structure. We propose a new decomposition of this neighborhood that can be used by a variable neighborhood descent framework, and also some speed-up methods for evaluating the neighbors. In this way we can obtain competitive running times. We conduct an experimental study to analyze the proposed algorithm and prove that it is significantly better than the state-of-the-art in standard benchmarks.  相似文献   

8.
This paper presents several search heuristics and their performance in batch scheduling of parallel, unrelated machines. Identical or similar jobs are typically processed in batches in order to decrease setup times and/or processing times. The problem accounts for allotting batched work parts into unrelated parallel machines, where each batch consists of a fixed number of jobs. Some batches may contain different jobs but all jobs within each batch should have an identical processing time and a common due date. Processing time of each job of a batch is determined according to the machine group as well as the batch group to which the job belongs. Major or minor setup times are required between two subsequent batches depending on batch sequence but are independent of machines. The objective of our study is to minimize the total weighted tardiness for the unrelated parallel machine scheduling. Four search heuristics are proposed to address the problem, namely (1) the earliest weighted due date, (2) the shortest weighted processing time, (3) the two-level batch scheduling heuristic, and (4) the simulated annealing method. These proposed local search heuristics are tested through computational experiments with data from dicing operations of a compound semiconductor manufacturing facility.  相似文献   

9.
In this paper, we consider the single machine weighted tardiness scheduling problem with sequence-dependent setups. We present heuristic algorithms based on the beam search technique. These algorithms include classic beam search procedures, as well as the filtered and recovering variants. Previous beam search implementations use fixed beam and filter widths. We consider the usual fixed width algorithms, and develop new versions that use variable beam and filter widths.  相似文献   

10.
This paper is concerned with solving the single machine total weighted tardiness problem with sequence dependent setup times by a discrete differential evolution algorithm developed by the authors recently. Its performance is enhanced by employing different population initialization schemes based on some constructive heuristics such as the well-known NEH and the greedy randomized adaptive search procedure (GRASP) as well as some priority rules such as the earliest weighted due date (EWDD) and the apparent tardiness cost with setups (ATCS). Additional performance enhancement is further achieved by the inclusion of a referenced local search (RLS) in the algorithm together with the use of destruction and construction (DC) procedure when obtaining the mutant population. Furthermore, to facilitate the greedy job insertion into a partial solution which will be employed in the NEH, GRASP, DC heuristics as well as in the RLS local search, some newly designed speed-up methods are presented for the insertion move for the first time in the literature. They are novel contributions of this paper to the single machine tardiness related scheduling problems with sequence dependent setup times. To evaluate its performance, the discrete differential evolution algorithm is tested on a set of benchmark instances from the literature. Through the analyses of experimental results, its highly effective performance with substantial margins both in solution quality and CPU time is shown against the best performing algorithms from the literature, in particular, against the very recent newly designed particle swarm and ant colony optimization algorithms of Anghinolfi and Paolucci [A new discrete particle swarm optimization approach for the single machine total weighted tardiness scheduling problem with sequence dependent setup times. European Journal of Operational Research 2007; doi:10.1016/j.ejor.2007.10.044] and Anghinolfi and Paolucci [A new ant colony optimization approach for the single machine total weighted tardiness scheduling problem. http://www.discovery.dist.unige.it/papers/Anghinolfi_Paolucci_ACO.pdf, respectively. Ultimately, 51 out of 120 overall aggregated best known solutions so far in the literature are further improved while other 50 instances are solved equally.  相似文献   

11.
In this paper we consider the job shop scheduling problem with total weighted tardiness objective (JSPTWT). This objective reflects the goal to achieve a high service level which is of increasing importance in many branches of industry. The paper concentrates on a class of baseline heuristics for this problem, known as neighborhood search techniques. An approach based on disjunctive graphs is developed to capture the general structure of neighborhoods for the JSPTWT. Existing as well as newly designed neighborhoods are formulated and analyzed. The performance and search ability of the operators (as well as combinations thereof) are compared in a computational study. Although no dominant operator is identified, a transpose-based perturbation on multiple machines turns out as a promising choice if applied as the only operator. Combining operators improves the schedule quality only slightly. But, the implementation of operators within a meta-heuristic enables to produce a higher schedule quality. A structural classification of neighborhood operators and some new analytical results are presented as well.  相似文献   

12.
In this paper, we solve the single machine total weighted tardiness problem by using integer programming and linear programming based heuristic algorithms. Interval-indexed formulation is used to formulate the problem. We discuss several methods to form the intervals and different post-processing methods. Then, we show how our algorithm can be used to improve a population of a genetic algorithm. We also provide some computational results that show the effectiveness of our algorithm. Many aspects of our heuristic algorithm are quite general and can be applied to other scheduling and combinatorial optimization problems.  相似文献   

13.
In this paper, we consider the single machine scheduling problem with weighted quadratic tardiness costs. Several efficient dispatching rules are proposed. These include existing heuristics for the linear problem, as well as procedures suitably adapted to the quadratic objective function. Also, both forward and backward scheduling procedures are considered.The computational results show that the heuristics that specifically take into account the quadratic objective significantly outperform their linear counterparts. Also, the backward scheduling approach proves to be superior, and the difference in performance is even more noticeable for the harder instances.The best of the backward scheduling heuristics is both quite efficient and effective. Indeed, this procedure can quickly generate a schedule even for large instances. Also, its relative deviation from the optimum is usually rather low, and it performs adequately even for the more difficult instances.  相似文献   

14.
A heuristic for job shop scheduling to minimize total weighted tardiness   总被引:6,自引:0,他引:6  
This paper considers the job shop scheduling problem to minimize the total weighted tardiness with job-specific due dates and delay penalties, and a heuristic algorithm based on the tree search procedure is developed for solving the problem. A certain job shop scheduling to minimize the maximum tardiness subject to fixed sub-schedules is solved at each node of the search tree, and the successor nodes are generated, where the sub-schedules of the operations are fixed. Thus, a schedule is obtained at each node, and the sub-optimum solution is determined among the obtained schedules. Computational results on some 10 jobs and 10 machines problems and 15 jobs and 15 machines problems show that the proposed algorithm can find the sub-optimum solutions with a little computation time.  相似文献   

15.
In this paper, we study on the Pharmacy Duty Scheduling (PDS) problem, where a subset of pharmacies should be on duty on national holidays, at weekends and at nights in order to be able to satisfy the emergency drug needs of the society. PDS problem is a multi-period p-median problem with special side constraints and it is an NP-Hard problem. We propose four Variable Neighborhood Search (VNS) heuristics. The first one is the basic version, BVNS. The latter two, Variable Neighborhood Decomposition Search (VNDS) and Variable Neighborhood Restricted Search (VNRS), aim to obtain better results in less computing time by decomposing or restricting the search space. The last one, Reduced VNS (RVNS), is for obtaining good initial solutions rapidly for BVNS, VNDS and VNRS. We test BVNS, VNRS and VNDS heuristics on randomly generated instances and report the computational test results. We also use VNS heuristics on real data for the pharmacies in central İzmir and obtain significant improvements.  相似文献   

16.
The Swap-Body Vehicle Routing Problem, a generalization of the well known Vehicle Routing Problem, can be stated as follows: the vehicle fleet consisting of trucks, semi-trailers, and swap bodies, is available at a single depot to serve a given set of customers. To serve a subset of customers, one may use either a truck carrying one swap body or a train (a truck with a semi-trailer attached to it) carrying two swap bodies. In both cases, a vehicle (a truck or a train) must perform a route starting and ending at the depot, so to satisfy demands of visited customers, maximal allowed route duration, allowed load on the used vehicle, and accessibility constraint of each customer. The accessibility constraint indicates whether a customer is allowed to be visited by a train or not. In addition, a set of swap locations is given where semi-trailers and swap bodies may be parked or swapped. The goal of the Swap-Body Vehicle Routing Problem is to minimize the total costs consisting of the fixed costs for using vehicles and costs for performing routes. In this paper, we propose two general variable neighborhood search heuristics to solve this problem. The quality of the proposed methods is evaluated on the instances provided by the organizers of VeRolog Solver Challenge 2014.  相似文献   

17.
We address the parallel machine total weighted tardiness scheduling problem with release dates. We describe dominance rules and filtering methods for this problem. Most of them are adaptations of dominance rules based on solution methods for the single-machine problem. We show how it is possible to deduce whether or not certain jobs can be processed by a particular machine in a particular context and we describe techniques that use this information to improve the dominance rules. On the basis of these techniques we describe an enumeration procedure and we provide experimental results to determine the effectiveness of the dominance rules.  相似文献   

18.
We address a multi-product inventory routing problem and propose a two-phase Variable Neighborhood Search (VNS) metaheuristic to solve it. In the first phase, VNS is used to solve a capacitated vehicle routing problem at each period to find an initial solution without taking into account the inventory. In the second phase, we iteratively improve the initial solution while minimizing both the transportation and inventory costs. For this, we propose two different algorithms, a Variable Neighborhood Descent and a Variable Neighborhood Search. We present an heuristic and a Linear Programming formulation, which are applied after each local search move, to determine the amount of products to collect from each supplier at each period. During the exploration, we use priority rules for suppliers and vehicles, based on the current delivery schedule over the planning horizon. Computational results show the efficiency of the proposed two-phase approach.  相似文献   

19.
This paper proposes a hybrid variable neighborhood search (HVNS) algorithm that combines the chemical-reaction optimization (CRO) and the estimation of distribution (EDA), for solving the hybrid flow shop (HFS) scheduling problems. The objective is to minimize the maximum completion time. In the proposed algorithm, a well-designed decoding mechanism is presented to schedule jobs with more flexibility. Meanwhile, considering the problem structure, eight neighborhood structures are developed. A kinetic energy sensitive neighborhood change approach is proposed to extract global information and avoid being stuck at the local optima. In addition, contrary to the fixed neighborhood set in traditional VNS, a dynamic neighborhood set update mechanism is utilized to exploit the potential search space. Finally, for the population of local optima solutions, an effective EDA-based global search approach is investigated to direct the search process to promising regions. The proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of experimental results, the high performance of the proposed HVNS algorithm is shown in comparison with four efficient algorithms from the literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号