首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Novel maximum-power-extraction algorithm for PMSG wind generation system   总被引:3,自引:0,他引:3  
The paper focuses on the development of a novel maximum-power-extraction algorithm (MPEA) including a maximum-power error-driven (MPED) mechanism and a maximum-power differential-speed (MPDS) control, for a wind generation system with a permanent-magnet synchronous generator (PMSG). In the proposed MPEA scheme, the MPED mechanism, operating like a traditional hill-climbing method, drives the output power gradually increasing to its maximum value by regulating the direction of current command according to the power variation trend. The MPDS control produces an additional step of current command based on the instantaneous difference of generator speeds, so that it can prevent the wind turbine from stalling at the suddenly dropping wind speed and achieve the object of maximum power extraction instantly as a stiff wind flowing through the wind turbine. In addition, the output is connected to a utility grid for providing energy flexibility via a unipolar full-bridge inverter controlled by a digital signal processor. The grid-connected experimentations of the proposed MPEA scheme, without any mechanical sensors for a wind-power emulation system via a PMSG driven by an induction motor, are given to examine its feasibility in practical applications  相似文献   

2.
Parallel operation of synchronous and induction generators in micro hydro scheme is presented. The synchronous generator has an exciter, which provides a fixed excitation to produce normal rated terminal voltage at full resistive load. On the other hand, the induction generator has neither exciter nor speed controller. Static compensator (STATCOM) is connected to the common bus for terminal voltage and frequency control. A resistive dump load is connected across the DC link capacitor of STATCOM through a chopper to control active power. Simulink model is developed to perform transient analysis of the proposed scheme. Experimental results are presented to compare with the simulation results. It is found that connection of an induction generator in parallel with the synchronous is much simpler than connecting two synchronous generators in parallel.  相似文献   

3.
A wind-driven doubly fed induction generator (DFIG) along with the battery and pumped hydro storage plant (PHSP) has been devised for supplying isolated loads. PHSP-based storage system is economical and viable for the MW level wind-turbine system. The proposed scheme employs a squirrel-cage induction machine (SCIM) coupled with reversible pump turbine for PHSP. The battery storage is also included in this system to cope up with the intermittent nature of wind and fast-changing load. A simple control strategy has been implemented for maintaining the set values of voltage magnitude and frequency at the stator terminals of DFIG, which serve as a virtual grid for connecting ac loads and SCIM. Based on the availability of power in the wind, PHSP and battery, various operating modes of the proposed system have been clearly identified for supplying the isolated loads. These operating modes are clearly demonstrated through the analysis developed for this purpose and validated through experimental results. The salient features of the proposed system over the existing stand-alone wind-driven generators are (i) structural simplicity, i.e., employing only one power electronic converter, (ii) wide speed operation of wind-driven DFIG, (iii) reduced battery capacity, (iv) high energy storage using PHSP and (v) availability of continuous power to the isolated loads.  相似文献   

4.
A modular multilevel converter (MMC) is one of the latest multilevel converters used for high and medium-voltage power conversion. It is based on cascade connection of multiple identical modules using IGBTs as switching devices. Module switches of MMC are preferably driven by a source derived from the module capacitor. In each MMC module, the control circuit, consisting of gate drivers, is powered from a dc supply derived from the local capacitor. The module capacitors need to be pre-charged, to power the control circuit. The problem faced while doing so experimentally for MMC with two modules per arm and a solution have been reported earlier. If a fly-back converter is used to generate the power supply for driving the control circuit, the module capacitor voltages become unstable during uncontrolled pre-charging. It has been reported earlier that the reason for this is approximately constant power load on the module capacitor. This work provides theoretical understanding of the problem and shows by analysis that the power supply can be made stable if the load on the module capacitor is made a positive resistance load. As the complexity of MMC with more than two modules per arm is higher, the phenomenon is studied by simulation for MMC with four modules per arm. It shows that when a fly-back converter is used for generating the power supply, similar instability occurs in MMC with four modules per arm. It shows that when the module capacitor is made to have a load with positive resistance characteristics, the module capacitor voltages and consequently the power supplies stabilize even for MMC with four modules per arm. It further shows that even if the load on the module capacitor is negative resistance type, when fly-back converter is used to generate the module power supply, by switching devices in those modules where power supply becomes available first, followed by sorting algorithm, stable power supplies can be developed on all the modules and the capacitors can be fully charged to the desired voltage.  相似文献   

5.
A nine-level hybrid symmetric cascaded multilevel converter (MLC) fed induction motor drive is proposed in this paper. The proposed converter is capable of producing nine output voltage levels by using the same number of power cells as that of conventional five-level symmetric cascaded H-bridge converter. Each phase in this configuration consists of one five-level transistor-clamped H-Bridge (TCHB) power cell and one three-level H-bridge power cell with equal dc link voltages, and they are connected in cascade. Due to cascade connection and equal dc link voltage, the power shared by each power cell is nearly equal. Near-equal power sharing enables the feature of improving input current quality by using an appropriate phase-shifting multi-winding transformer at the converter input. In this paper, the operation of the converter is explained using staircase and hybrid multi-carrier sine PWM techniques. Further, a detailed analysis for the variations in the dc link capacitor voltages and the dc link mid-point voltage in TCHB power cell is carried out, and the analytical expressions thus obtained are presented. The performance of proposed system is analysed by simulating a 500 hp induction motor drive system in MATLAB/Simulink environment. A laboratory prototype is also developed to validate the claims experimentally.  相似文献   

6.
A rotor position estimation scheme for stator flux-oriented speed sensorless control of slip ring induction machine (SRIM) is presented in this paper. Position of the rotor is estimated by integrating the rotor back-electromotive force. The problem of DC drift during integration is eliminated using an error-decaying mechanism in the estimator. This estimation scheme reduces the propagation of noise in the sensed current to the estimated rotor side unit vectors. This scheme also eliminates the need for differentiating the unit vectors for estimating slip frequency. The proposed scheme is simulated and experimentally verified.  相似文献   

7.
A novel symmetrical zero current switching (ZCS)-pulse width modulation (PWM) cells-assisted high-frequency transformer link DC-DC converter using insulated gate bipolar transistor (IGBT) modules is presented. The proposed soft switching scheme is based on the switched-capacitor and inductive snubber in the high-voltage side inverter, assisted by active switching of MOSFET synchronous rectifier in the secondary-side low-voltage converter stage. By introducing the ZCS-PWM snubber cells, soft switching commutation which is less sensitive to the current level through the IGBTs can be achieved under the wide output power ranges. The converter circuit topology and the ZCS snubber cell operation are examined and evaluated with simulation results, and the feasibility of the converter topology is verified by experiments using a 1.0 kW-25 kHz prototype system.  相似文献   

8.
The paper describes a simple control structure for a vector-controlled stand-alone induction generator (IG) used to operate under variable speeds. Deadbeat current control is developed for a voltage source PWM converter and the three-phase variable speed squirrel-cage IG to regulate DC-link and generator voltages with newly designed phase-locked-loop circuit. The required reactive power for the variable-speed IG is supplied by means of the PWM converter and a capacitor bank to build up the voltage of the IG without the need for a battery and to reduce the rating of the PWM converter with the need for only three sensors. This proposed scheme can be used efficiently for variable speed wind or hydro energy conversion systems. The measurements of the IG system at various speeds and loads are given and show that this proposed system is capable of good AC and DC voltages regulation  相似文献   

9.
Subhasis Nandi 《Sadhana》2008,33(5):565-580
There have been renewed interests in slip-ring induction machines due to their increasing use in both grid connected and stand-alone wind power generation schemes. Despite the squirrel cage induction generators’ advantages of being brushless, low-cost, needing less maintenance and having inherent overload protection, the biggest advantage of variable-speed wound rotor induction machines is in its doubled energy capture. Also in high power induction motor drives such as static Kramer drives or static Scherbius drives use of wound rotor induction motors is a must. Thus it becomes necessary to measure the speed of the machine for closed loop control for such high performance drives. Recently, a sensorless position and speed estimation scheme was proposed for wound rotor wind power generator. In this paper, the limitation of the scheme caused by space and time harmonics have been investigated. Simulation results have been presented to explain the mechanism of the space and time harmonics caused distortion of current. Experimental results showing the deterioration of speed detection scheme at light load for a slip-ring induction motor have been presented. Finally, improvements have been applied experimentally to obtain better speed estimation.  相似文献   

10.
The study of a hypothetical large offshore wind farm based on centralised power conversion and interconnected to the grid using a multiterminal parallel high voltage direct current (HVDC) link is presented. The 300 MW wind farm consists of 60 squirrel-cage based 5 MW generators connected to a common DC bus using ten voltage source converters (VSCs). The transmission system converters provide variable speed generator control, and therefore individual converters are not required for each wind generator, implying savings in wind farm costs. The paper studies the technical and economical benefits of the proposed topology, as well as the selection of the main components. A detailed analysis of the control circuits for both generator and grid facing converters, with respect to primary control functions, is also given. PSCAD/EMTDC simulation of the proposed concept is presented for realistic wind signals. The results confirm operation at an average optimum coefficient of performance at each respective generator group, as well as satisfactory stability even for severe wind speed changes. The proposed concept reduces the costs associated with DC interconnection and may simplify integration of large offshore wind farms at substantial distances.  相似文献   

11.
The commutatorless motor (CLM) is a type of a dc motor whose commutator is replaced by the thyristor power converter. The thyristors are switched by the signals from a position sensor connected to the rotating shaft of the synchronous motor. Therefore, the CLM never loses synchronism and has the good speed characteristics of a dc motor. The current type CLM, having a current smoothing reactor, was studied and found to have better characteristics than the voltage type. In this paper two kinds of the current type CLMs are described; one is the dc CLM using an inverter, the other the ac CLM using a cycloconverter.  相似文献   

12.
ABSTRACT

This paper proposes a grid-tie PV inverter that is able to improve power quality under conditions of both distorted and unbalanced source voltage. The presented strategy is based on the instantaneous power theory and uses a second-order generalized integrator-quadrature signal generator (SOGI-QSG). The presented control strategy is aimed at compensating reactive power, eliminating current harmonics, load balancing, and enabling the PV to inject maximum power to the grid. The advantages of the control system are the use of SOGI-QSG adaptive filter and frequency-locked loop (FLL), and removing the low-pass filter and phase-locked loop (PLL). DC–DC and DC–AC converters are utilized for connecting the PV to the grid. The DC–DC and DC–AC converters are responsible for maximum PV power tracking and achieving the control aims, respectively. Using 4-leg converter structure for grid-tie inverter enables achieving the control objectives in 3-phase 4-wire distribution network without any transformer. The presented control strategy is applied to a 3-phase 4-wire distribution network and is simulated in MATLAB/SIMULINK environment. The results of this simulation are then compared with the conventional instantaneous power method in areas including load balancing, reactive power compensation and the elimination of current harmonics, under unbalanced and distorted source voltage conditions.  相似文献   

13.
A dynamic voltage restorer (DVR) to compensate deep voltage sags and harmonics is proposed. The DVR consists of shunt and series converters connected back-to-back through a DC-to-DC step up converter. The presence of the DC-to-DC step converter permits the DVR to compensate deep voltage sags for long duration. The series converter is connected to the supply side whereas the shunt converter is connected to the load side. With this configuration, there is no need for large DC capacitors. A design procedure for the components of the DVR is presented under a voltage sag condition. The control system of the proposed DVR is based on hysteresis voltage control. Besides voltage sag compensation, the capability of compensating load voltage harmonics has been added to the DVR to increase the power quality benefits to the load with almost negligible effect on the sag compensation capability. The proposed DVR is modelled and simulated using SIMULINK/MATLAB environment. Time domain simulations are used to verify the operation of the DVR with linear and non-linear loads.  相似文献   

14.
This paper suggests a combined novel control strategy for DFIG based wind power systems (WPS) under both nonlinear and unbalanced load conditions. The combined control approach is designed by coordinating the machine side converter (MSC) and the load side converter (LSC) control approaches. The proposed MSC control approach is designed by using a model predictive control (MPC) approach to generate appropriate real and reactive power. The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation. It shows its superiority by eliminating the requirement of transformation, switching table, and the PWM techniques. The proposed MSC reduces the cost, complexity, and computational burden of the WPS. On the other hand, the LSC control approach is designed by using a mathematical morphological technique (MMT) for appropriate DC component extraction. Due to the appropriate DC-component extraction, the WPS can compensate the harmonics during both steady and dynamic states. Further, the LSC controller also provides active power filter operation even under the shutdown of WPS condition. To verify the applicability of coordinated control operation, the WPS-based microgrid system is tested under various test conditions. The proposed WPS is designed by using a MATLAB/Simulink software.  相似文献   

15.
This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV inverter output voltage, and the inverter operates in a current controlled mode. The current controller for grid connected mode fulfills two requirements – namely, (i) during light load condition the excess energy generated from the PV inverter is fed to the grid and (ii) during an overload condition or in case of unfavorable atmospheric conditions the load demand is met by both PV inverter and the grid. In order to synchronize the PV inverter with the grid a dual transport delay based phase locked loop (PLL) is used. On the other hand, during isolated grid operation the PV inverter operates in voltage-controlled mode to maintain a constant amplitude and frequency of the voltage across the load. For the optimum use of the PV module, a modified P&O based maximum power point tracking (MPPT) controller is used which enables the maximum power extraction under varying irradiation and temperature conditions. The validity of the proposed system is verified through simulation as well as hardware implementation.  相似文献   

16.
An active snubber dc/dc converter to achieve zero voltage switching (ZVS) on power switch is presented. In the proposed converter, the primary windings of two transformers are connected in series so that the primary currents of the two transformers are equal. The secondary sides of the isolated zeta converters are connected in the parallel to share the load current and reduce the current stresses on the secondary windings of the two transformers. A boost type of active snubber is connected in parallel with the main switch to recycle the energy stored in transformer leakage and magnetizing inductors and to limit voltage stress of the main switch. During the transition interval between the active switch and the auxiliary switch, the resonance based on the resonant inductor and the output capacitor of the power switch will allow the switch to turn on at ZVS. The principle of operation, steady-state analysis and design consideration of the proposed converter are provided. Finally, experimental results for a 360 W (12 V/30 A) prototype circuit with 150 kHz switching frequency were given to demonstrate the circuit performance and verify the feasibility of the proposed converter.  相似文献   

17.
Abstract

This paper presents a frequency‐dependent droop scheme for paralleling UPS inverters with no control interconnection, so the inverters can be tightly connected with the load. At the fundamental frequency, the reference voltage of the inverter is generated as a reactor connected between the inverter and the load. The intention is to control the real and reactive power sharing of inverters with the QV and P‐ω droop scheme employed in the power system without needing a true transfer reactor. At the harmonic frequency, the reference voltage is generated as a resistor connected between the inverter and the load. The intention is that the load harmonic current can be shared equally and the voltage waveform distortion will be low. Two 1KVA single‐phase inverters are designed and implemented, some simulation and experimental results are provided for demonstrating the effectiveness of the proposed approach.  相似文献   

18.
To enhance the conversion efficiency and electrical reliability of the low-voltage fuel-cell (FC) power generation system, this paper proposes a modular single-phase grid-tie inverter system equipped with a power management and remote monitoring interface. In this system, each single power module is composed of three single-stage quasi-resonant (QR) flyback current-source inverters that are connected in parallel, and all the power modules are connected in parallel to achieve flexible power scaling and load sharing. The proposed grid-tie inverter system possesses a power management unit (PMU) and can be integrated with a home energy management system (HEMS). An experiment was conducted to verify the feasibility of the proposed concept, in which five power modules were assembled to form a 1-kW high-efficiency grid-tie inverter system, which was modulated through the PMU. The results showed satisfactory load-sharing characteristics between the parallel-connected power modules. The peak efficiency for each power module and the overall power generation system are about 94.5 and 90%, respectively. The proposed system exhibits flexible power scaling, load sharing, and high reliability.  相似文献   

19.
T Bogaraj  J Kanakaraj 《Sadhana》2016,41(7):755-769
This work presents a new adaptive scheme for energy management in an independent microgrid. The proposed energy management system has been developed to manage the utilization of power among the hybrid resources and energy storage system in order to supply the load requirement based on multi-agent system (MAS) concept and predicted renewable powers and load powers. Auto regressive moving average models have been developed for predicting the wind speed, atmospheric temperature, irradiation, and connected loads. The structure proposed in this paper includes renewable sources as primary source and storage system as secondary source. A wind generator and solar PV array system together acts as primary source, which supplies power to the local load most of the time in this energy management strategy. When they fail to meet the load demand, the secondary source present in the system will assist the primary source and help to attain the goal of satisfying load demand without interruption. If the primary source and secondary source together are not able to meet the load demand then load shedding will be executed according to the priority set. Thus the developed MAS algorithm co-ordinates the hybrid system components and achieves energy management among renewable energy sources, storage units, and load under varying environmental conditions and varying loads. STATCOM based compensation has been implemented to balance the reactive power demand and to mitigate the voltage fluctuations and harmonics on the AC bus. The proposed microgrid has been simulated with MAS concept in Matlab/Simulink environment. The results presented in this paper show cases the effectiveness of the proposed energy management controller.  相似文献   

20.

Three phase short circuit power converter faults in wind turbines (WT) result in highly dynamic generator torque reversals, which lead to load reversals within the drivetrain. Dynamic load reversals in combination with changing rotational speeds are, for example, critical for smearing within roller bearings. Therefore, an investigation of the correlation between three phase short circuit converter faults and drivetrain component failures is necessary.

Due to the risk of damage and the resulting costs, it is not economically feasible to extensively investigate three phase short circuit converter faults on test benches. Valid WT drivetrain models can be used instead. A WT drivetrain model, which has been developed and validated in a national project at the CWD, is used and a three phase short circuit converter fault is implemented. In this paper, the resulting torque load on the drivetrain for a three phase short circuit converter fault in rated power production is presented. This converter fault leads to a highly dynamic reversing electromagnetic torque which exceeds the rated torque by a factor of three. As a result the load on the rotor side high speed shaft (HSS) bearing oscillates and increases by around 15 per cent compared to rated power production. Simultaneously the rotational velocity of the HSS oscillates with an amplitude of 10 rpm. Therefore an increase in the risk of smearing is expected.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号