首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01-15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2-12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate well with the conductivity and percolation results for these composites. The composites show very low conductivity thresholds (e.g. 0.062%). A 20-30 dB EMI SE has been obtained in the X-band range for 15% SWCNT loading, indicating that the composites can be used as effective lightweight EMI shielding materials. Furthermore, their EMI performance to radio frequencies is found to correspond well with their permittivity data.  相似文献   

2.
Composites, comprised of acrylonitrile styrene acrylate copolymer (ASA)/graphite (GR) with high electromagnetic interference shielding effectiveness (EMI SE), were fabricated by the introduction of carbon black (CB). The effects of CB on properties such as EMI SE, morphology, heat resistance, rheological and mechanical performance of the composites were characterized using a scanning electron microscope (SEM), rotational rheometer, electromagnetic shielding measuring instruments. The graphite and carbon black exhibited positive synergistic action, which promoted the complete formation of conductive networks in ASA matrix. The EMI SE and electrical conductivity of the ASA/GR/CB composites increased with higher CB loadings. In the frequency range of 30–3000 MHz, the maximum EMI SE of ASA composites with 50 % fillers reached 40 dB, but with 40 % fillers this property reached its maximum value of 50 dB. The flexural strength of ASA/GR/CB composites started to decline as CB loading exceeded 5 %. The heat resistance of the composites was improved due to the addition of CB. In this respect, the vicar softening temperature (VST) of the composites with 40 % fillers increased from 115.1 to 132.7 °C, and the VST of the composites with 50 % fillers was elevated from 125.4 to 138.9 °C.  相似文献   

3.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

4.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

5.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

6.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

7.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

8.
GNS/PVDF, AGS/PVDF and AGS@CuPc/PVDF composites were prepared using hot press molding technique. The micromorphologies showed that the dispersion degree of the GNS in the matrix decreases in the following order: AGS@CuPc/PVDF > AGS/PVDF > GNS/PVDF. It could be attributed to AGS treated with copper phthalocyanine (CuPc) exhibit strongest interface bonding with PVDF, and acidification GNS (AGS) have stronger interface bonding with PVDF than GNS. GNS/PVDF composites showed a slight increase in dielectric constant and dielectric loss with the growing content of fillers. AGS/PVDF composites presented a better performance in dielectric constant than that of GNS/PVDF but with a much higher dielectric loss. Especially AGS@CuPc/PVDF three-phase composite displayed better dielectric properties than GNS/PVDF and AGS/PVDF composites, with a dielectric constant 327 and a dielectric loss 0.63 at 10 kHz. It could be attributed to the cooperation of well dispersion of conductive fillers and the electric barrier effects of CuPc.  相似文献   

9.
Yuchi Fan  Jianlin Li  Jiaqi Li  Feng Chen  Wan Jiang 《Carbon》2010,48(6):1743-4640
Fully dense graphene nanosheet(GNS)/Al2O3 composites with homogeneously distributed GNSs of thicknesses ranging from 2.5 to 20 nm have been fabricated from ball milled expanded graphite and Al2O3 by spark plasma sintering. The percolation threshold of electrical conductivity of the as-prepared GNS/Al2O3 composites is around 3 vol.%, and this new composite outperforms most of carbon nanotube/Al2O3 composites in electrical conductivity. The temperature dependence of electrical conductivity indicated that the as-prepared composites behaved as a semimetal in a temperature range from 2 to 300 K.  相似文献   

10.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

11.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

12.
Jun Yan  Bo Shao  Weizhong Qian  Fei Wei 《Carbon》2010,48(2):487-784
A graphene nanosheet (GNS)/polyaniline (PANI) composite was synthesized using in situ polymerization. The morphology and microstructure of samples were examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge/discharge. GNS as a support material could provide more active sites for nucleation of PANI as well as excellent electron transfer path. The GNS was homogeneously coated on both surfaces with PANI nanoparticles (∼2 nm), and a high specific capacitance of 1046 F g−1 (based on GNS/PANI composite) was obtained at a scan rate of 1 mV s−1 compared to 115 F g−1 for pure PANI. In addition, the energy density of GNS/PANI composite could reach 39 W h kg−1 at a power density of 70 kW kg−1.  相似文献   

13.
Cement-based ceramic pellets were prepared and their properties were studied for electromagnetic interference (EMI) shielding applications. The shielding materials were made of Portland cement with the addition of different concentrations of manganese oxide (MnO2) up to 10 wt%. The pellets were sintered at 850 °C for 5 h and then polished prior to characterizations of density, porosity, microstructures, dielectric properties, and EMI shielding effectiveness (SE). Results show that the MnO2-cement pellets have good dielectric properties, i.e. high dielectric constant (∼300) and low dielectric loss (<0.3). The dielectric constant increased with increasing MnO2 content in the cement matrix. The SE values of the MnO2-cements fluctuated between 2 dB and 9 dB in the frequency range of 8-13 GHz. The sample with 10 wt% MnO2 additive had SE values of up to 9 dB. Most of the samples with high additive concentrations produced SE exceeding 7 dB.  相似文献   

14.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

15.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

16.
Anhydrous proton-conducting inorganic-organic hybrid membranes were prepared by sol-gel process with tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide [EMI][TFSI] ionic liquid as precursors. These hybrid membranes were studied with respect to their structural, thermal, proton conductivity, and hydrogen permeability properties. The Fourier transform infrared spectroscopy (FT-IR) and 31P, 1H, and 13C nuclear magnetic resonance (NMR) measurements have shown good chemical stability, and complexation of PO(OCH3)3 with [EMI][TFSI] ionic liquid in the studied hybrid membranes. Thermal analysis including TG and DTA confirmed that the membranes were thermally stable up to 330 °C. Thermal stability of the hybrid membranes was significantly enhanced by the presence of inorganic SiO2 framework and high stability of [TFSI] anion. The effect of [EMI][TFSI] ionic liquid addition on the microstructure of the membranes was studied by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) micrographs and no phase separation at the surfaces of the prepared membranes was observed and also homogeneous distribution of all elements was confirmed. Proton conductivity of all the prepared membranes was measured from −20 °C to 150 °C, and high conductivity of 5.4 × 10−3 S/cm was obtained for 40 wt% [EMI][TFSI] doped 40TMOS-50MTMOS-10PO(OCH3)3 (mol%) hybrid membrane, at 150 °C under anhydrous conditions. The hydrogen permeability was found to decrease from 1.61 × 10−11 to 1.39 × 10−12 mol/cm s Pa for 40 wt% [EMI][TFSI] doped hybrid membrane as the temperature increases from 20 °C to 150 °C. For 40 wt% [EMI][TFSI] doped hybrid membrane, membrane electrode assemblies were prepared and a maximum power density value of 0.22 mW/cm2 at 0.47 mA/cm2 as well as a current density of 0.76 mA/cm2 were obtained at 150 °C under non-humidified conditions when utilized in a H2/O2 fuel cell.  相似文献   

17.
《Ceramics International》2022,48(18):26013-26021
Electromagnetic interference (EMI) shielding composite materials exhibit many amazing characteristics, including low density, excellent flexibility and corrosion resistance, compared with metals. However, it is a long-standing challenge for EMI shielding materials to overcome inferior mechanical properties and limited hydrophobic characteristics. In this work, the high-strength, flexible and superhydrophobic graphene nanosheet/aramid nanofiber (GNS/ANF) nanocomposite films with layered microstructure were prepared by the sol-gel transformation and spray coating process. The resultant film exhibits excellent mechanical properties with a high tensile strength (131.17 ± 2.77 MPa), large fracture strain (9.58 ± 0.58%), and favorable toughness (8.84 ± 0.74 MJ m?3), which are 26.2 times, 7.5 times and 221.0 times higher than those of pure GNS films. These results are attributed to synergistic effect between intensive stretching of three dimensional (3D) nanofiber network and extensive sliding of GNS produced effective energy dissipation. Moreover, the film with content of 70 wt% GNS has EMI shielding effectiveness of 31.3 dB, and its reflection coefficient is more than 0.89, revealing a reflection-dominant shielding mechanism. Meanwhile, the film possesses superhydrophobic property (158.7° ± 1.1°) and flame retardancy. The multilayered nanocomposite films have excellent potential for high-performance EMI shielding applications under some outdoor conditions.  相似文献   

18.
Poly(vinylidene fluoride-co-hexafluoropropylene)/polyaniline (PVDF-co-HFP/PAni) conductive blends were prepared by two methodologies involving the in situ polymerization in two different media and dry blending approach using ball milling. Dodecylbenzenesulfonic acid (DBSA) was used both as surfactant and as protonating agent in PAni synthesis. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) spectroscopy, and thermogravimetric analysis were used for characterizing the blends. PAni and PVDF/PAni prepared by in situ polymerization in H2O/toluene medium exhibited superior electrical conductivity, higher thermal stability and significantly higher electromagnetic interference shielding effectiveness (EMI SE) than those prepared in H2O/dimethylformamide (DMF) medium. PVDF/PAni with high-PAni content (>40%) prepared by the dry blend approach presented higher conductivity and EMI SE than those prepared by in situ polymerization. The molding temperature exerted significant influence on the conductivity and EMI SE for the blend containing higher amount of PAni. The free-solvent dry blending approach using ball milling presented similar conductivity value but the higher EMI SE when compared with in situ polymerization, and is considered environmentally and technologically interesting.  相似文献   

19.
The interaction of acetone with single wall carbon nanotubes (SWCNTs) was studied by temperature programmed desorption with mass spectrometry (TPD-MS), after reflux, sonication, or exposure to 7.6 Torr of acetone vapors at room temperature. Acetone molecules adsorb strongly on SWCNTs desorbing at ∼400-900 K, corresponding to desorption energies of ∼100-225 kJ/mol, as intact molecules. Exchange of intact adsorbed molecules with gas phase species was observed in successive dosing of hydrogenated and deuterated acetone molecules. The desorption energies reported here are in stark contrast to the desorption energies (∼75 kJ/mol) reported earlier for SWCNTs interacting with acetone under high vacuum at cryogenic temperatures. This result suggests activated adsorption/desorption, and is also observed for adsorption of ethanol, methane, n-butane and 1,3-butadiene on SWCNTs and on carbon black. Quantum chemical calculations suggest that adsorption in interstitial channels of bundles formed of large-diameter SWCNTs is possible and can account for high desorption barriers, a result of strong dispersion interactions between neighboring SWCNTs.  相似文献   

20.
UHMWPE/MWCNT and UHMWPE/GNS composites with a segregated network are prepared. TEM and SEM images indicate that the conducting fillers are distributed on the UHMWPE surface and form a segregated conducting network. The percolation threshold of UHMWPE/GNS composites is ≈0.25 wt% and that of UHMWPE/MWCNT composites is 0.20 wt%. The electrical conductivity of UHMWPE/GNS composites is almost four orders of magnitude lower than that of the UHMWPE/MWCNT composites. For equivalent concentrations of GNS and MWCNT, the composites with hybrid fillers exhibit a lower percolation threshold and a higher conductivity than that with GNS or MWCNT alone. Due to the high strength of the fillers and the segregated network structure, the mechanical properties of the composites first increase and then decrease with increasing filler content.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号