首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
液体静压主轴油膜滑移现象的分析及试验研究   总被引:1,自引:0,他引:1  
针对液体静压主轴运动过程中动态特性问题,研究微尺度下油膜滑移对轴承承载力,刚度及动态刚度的影响。把微尺度下发生的速度滑移引入到油膜性能方程中,结合液体静压主轴系统平衡方程推导出了主轴系统承载力、刚度及动态刚度表达式,研究了油膜初期主轴静动态性能及油膜动刚度特性。从仿真结果中得到油膜滑移的发生使得承载力及刚度增大,最大刚度对应油膜厚度减小。最后刚度检测试验间接得出了实际主轴系统油膜流动过程中,存在油膜微滑移现象。本项研究为液体静压主轴微尺度下油膜滑移现象及性能的研究探索了一条新途径。  相似文献   

2.
为了研究微尺度下速度滑移对液体静压止推轴承性能的影响,将速度滑移模型引入传统雷诺方程中,得到修正的雷诺方程;通过求解修正后的雷诺方程,得到速度滑移影响下八油腔液体静压止推轴承的静态性能特性。研究结果表明:速度滑移的存在并没有改变轴承性能的变化趋势,但使得相同油膜厚度下油膜压力、轴承承载力和刚度增大;随着滑移长度的增大,轴承油腔压力、承载力及刚度增大,最优油膜厚度变小;轴承的承载力和刚度随着供油压力的增大而增大,供油压力相同时,速度滑移使得轴承承载力和刚度有一定程度的增大。  相似文献   

3.
由于空气静压主轴气膜厚度处于微米级别,而主轴中的不平衡现象会影响轴承内的气膜厚度变化,因而需要对各微尺度影响因素综合考虑,并对影响主轴不平衡的各因素进行充分考虑才能真实反映主轴内的气膜流动状态,仿真出轴承的静态性能。充分考虑影响主轴不平衡的各因素并对传统雷诺方程进行修正,研究黏度、流量因子、速度滑移3个微尺度因子及转子偏心和制造误差对轴承静态性能的影响,并通过实验验证从而实现对空气静压主轴静态特性的真实预测和分析。结果表明:3个微尺度因子中,速度滑移对轴承气体压力分布影响最大,同时考虑3个微尺度因子时更能反映轴承气膜流动真实状态;转子偏心与制造误差耦合时,随转子偏心率增大,轴承中各节流孔附近的气膜压力分布与气膜刚度差异越来越大,将严重影响轴承气膜刚度。  相似文献   

4.
基于Navier滑移的油膜缝隙微流动特性数值分析   总被引:2,自引:1,他引:2  
针对液压系统中微米级油膜缝隙流动内的近壁面滑移微观尺度效应,采用计算流体力学(Computational fluid dynamics,CFD)方法分析壁面滑移作用对微米级油膜缝隙流动规律特性的影响。在对静压支承系统中封油边内油膜缝隙流动进行边界条件处理时,采取了壁面滑移速度与壁面滑移系数和当地局部速度梯度都成正比的Navier滑移模型边界条件。在数值模拟和理论基本吻合的基础上,进一步讨论分析壁面滑移系数对微米级油膜缝隙流动特性的影响,侧重分析考虑壁面表观粘度系数、温粘特性和非牛顿流体属性对微米级油膜缝隙流动特性分布和缝隙壁面滑移速度大小的影响。研究表明在微观尺度下具有界面滑移的油膜缝隙流动区别于无滑移的缝隙流动特性,壁面材料特性系数φ=0.01时,缝隙壁面的滑移速度越大,油膜缝隙流动分布均匀。其温粘特性将最大限度地影响壁面滑移速度大小和缝隙流动特性分布。  相似文献   

5.
对于多孔质材料内的气体流动,基于Darcy定律建立其理论模型,并建立气膜间隙流场的雷诺方程,考虑速度滑移修正方程;将上述2个区域的压力分布方程进行耦合,通过有限元方法对耦合后的压力分布方程进行离散化,用超松弛迭代求解出气膜内各节点的压力分布,分析速度滑移对多孔质静压气体轴承静特性的影响。结果表明,考虑速度滑移所计算的气膜压力分布变化平稳过渡,没有较大的突变。计算轴承的承载力及刚度,结果显示在气密间隙小于15μm时,随着气膜厚度的增大偏心导致的压差增大使承载力不断增大;且当速度滑移系数小于0.1时,速度滑移对轴承承载力及刚度有较大的影响。  相似文献   

6.
考虑空穴效应和轴瓦界面滑移效应,运用Fluent建立滑动轴承两相流模型,研究不同滑移区域、转速和黏度对油膜承载力及气穴分布的影响规律。研究表明:复合滑移表面比完全滑移和无滑移表面更能提高油膜压力和承载力,同时复合滑移表面能降低高体积分数空穴比例;转速增加能提高油膜压力和承载力,但油膜的高体积分数空穴比例会增加;黏度增加虽然能增加轴承承载力,但同时也加剧了发散楔区域的空化现象,使油膜稳定性下降。  相似文献   

7.
针对实验室研制的高效深切磨床动静压轴承主轴系统,首先利用计算流体力学软件CFX,对动静压轴承的油膜进行稳态分析,得到油膜上的压力分布。通过在不同的小位移和速度扰动的情况下轴承油膜承载力的变化规律,依此来确定轴承油膜的刚度和阻尼系数。在ANSYS中,采用Ma-trix27单元来模拟动静压轴承油膜的刚度和阻尼作用,并对主轴进行模态分析。结果表明,在微小的位移扰动和速度扰动的情况下,油膜的弹性力和阻尼力近似为线性的,主轴模态有限元计算结果与实测结果基本一致,证明了该分析方法的正确性。  相似文献   

8.
《机械科学与技术》2016,(7):1073-1082
将PM流量控制器用于无周向回油槽四腔向心静压轴承,建立了PM流量控制器静压轴承数学模型,重点研究分析了轴承结构参数及PM流量控制器参数对静压轴承特性的影响。研究结果表明:轴承轴流封油边系数越小、周流封油边系数越大,轴承油膜刚度和承载力越大,初始油膜间隙增大,油膜刚度减小;润滑油动力粘度较大且初始油膜间隙较小时,油膜刚度和承载力较大;液阻比越小,比流量越大,油膜刚度越大;供油压力越大,油膜刚度、承载力和流量越大。同时基于线性化下液体静压轴承系统的传递函数,利用Matlab Simulink软件在时域和频域内分别研究了静压轴承系统的动态特性。研究结果表明:在阶跃载荷作用下,随着供油压力和比流量的提高,过渡过程时间越短,静压轴承系统的动态特性越好;在正弦载荷作用下,提高供油压力、比流量都会使轴心偏移量的稳态幅值减小,油膜动刚度增大,且供油压力较比流量对系统频率特性的影响显著。  相似文献   

9.
《轴承》2017,(8)
针对滑移的不同情况,将界面滑移分为无滑移、仅上边界滑移、仅下边界滑移和两边界均滑移4种类型,以力学平衡方程和Newton黏性流体力学公式为基础,基于楔形油膜模型,建立界面滑移状态下滑动轴承摩擦阻力计算模型,探究不同界面滑移时影响滑动轴承摩擦阻力的敏感参数,并借助有限元软件分析不同滑移情况下界面滑移对摩擦阻力的影响规律。结果表明:轴承的摩擦阻力主要由轴颈线速度、油膜滑移比、进出油口的压力、油膜厚度和承载力决定,油膜上、下表面均发生滑移时的摩擦阻力明显低于无滑移时的摩擦阻力。  相似文献   

10.
《轴承》2020,(8)
基于平面螺旋槽气体止推轴承结构,结合以对数螺旋线为素线的空间螺旋曲面结构,提出一种新型气体止推轴承模型。通过坐标变换推导出适应对数螺旋线轨迹的流量方程,引入一阶滑移和新滑移边界条件修正流量方程,应用数值方法迭代求解了连续型模型和2种滑移模型下新型气体止推轴承的气膜压力分布。结果表明:微尺度下随着气膜厚度减小,边界速度滑移效应会对轴承承载力特性产生很大影响;当Knudsen数增大到过渡区时,一阶滑移和新滑移模型之间的偏差明显增大;在相对较低的转速下,新型轴承的承载力相较于传统轴承明显增大。  相似文献   

11.
目前对于二维流场及复杂流场的界面滑移分析很少,根据螺旋油楔滑动轴承能使润滑剂产生周向和轴向二维流动的独特的结构特点,考虑周向和轴向两方向的滑移建立基于极限切应力的数学模型,并通过试验和理论对比验证模型的正确性。试验方面运用"目标速度跟踪法"证实了周向和轴向都存在滑移,获知随着供油压力的提高滑移速度有所提高,并且提出轴瓦和轴表面的极限切应力;理论方面运用有限差分法和试验测得的轴瓦和轴表面极限切应力,求解四种状态的广义雷诺方程,发现滑移发生在极限切应力大、间隙小和油膜的封油面区域;考虑界面滑移时,螺旋油楔滑动轴承的承载力和摩擦阻力有所降低;偏心率、螺旋角和转速的变化,影响着承载力和摩擦阻力降低的幅度。  相似文献   

12.
以流体润滑为基础,考虑热效应对油膜黏度的影响,研究涡轮增压器浮环轴承的动态特性,利用DyRoBesBeperf软件建立涡轮增压器浮环轴承的参数化模型,在环速比一定时分析浮环轴承内外油膜压力的分布,以及偏心率、油膜的刚度、阻尼随转速的变化规律。研究表明:在浮环轴承结构参数及载荷一定的情况下,随转子转速的增加,其偏心率下降,Sommerfeld数和功耗均增大,且内油膜的Sommerfeld数、功耗大于外油膜的Sommerfeld数及功耗,因此内油膜承载力大于外油膜承载力;因偏心率随转速的增大而减小,因此油膜等效刚度和等效阻尼下降。  相似文献   

13.
为获得润滑状态下三点接触球轴承更为准确的刚度特性,应考虑弹流润滑效应对轴承刚度的影响。文中基于拟静力学模型考虑高速离心力和陀螺力矩效应,根据给定轴承的结构参数和工况,计算滚动体与内外圈的法向接触载荷和各部件的运动速度。将拟静力学模型的计算结果和润滑介质参数代入弹流润滑模型,求解出滚动体与内外圈之间的压力分布和油膜厚度分布。进一步研究了转速、轴向载荷和润滑油的初始黏度对油膜压力和最小油膜厚度的影响。基于弹流润滑理论分析了转速和轴向载荷对轴承接触刚度、油膜刚度及综合刚度的影响。结果表明:转速的提高会大幅增加润滑油膜的整体厚度;润滑油初始黏度的增大会增加油膜厚度;随着轴承转速的提高,轴承的整体轴向刚度和轴向油膜刚度减小;随着轴向载荷的增大,轴承轴向刚度和轴向油膜刚度增大,且差值变化不大。  相似文献   

14.
针对引进空压机支撑轴承为横错位圆轴承的这一结构型式,依据二维变粘度雷诺方程、绝热流动能量方程、和幂函数式温粘关系三者的联立解,采用直接迭代法求出一系列偏心率下的油膜压力分布、温度分布和粘度分布,以及由此积分所得的承载力。然后根据轴承的承载力与载荷值相平衡的条件,从中找到轴承工作时的偏心率以及相应的最大油膜压力、最小油膜厚度和最高温度。可据以判断轴承工作是否安全。经装机使用表明,其轴承的振动、温升和使用寿命等技术经济指标均达到了进口轴承水平。  相似文献   

15.
浮环轴承内螺纹织构深度会改变织构区域油膜厚度,导致浮环轴承油膜动态特性变化,从而影响涡轮增压器转子-轴承系统运行稳定性以及工作寿命。基于流体润滑理论,推导含表面织构的浮环轴承油膜控制方程,揭示内螺纹织构深度与浮环轴承油膜特性之间的关系。以某型涡轮增压器浮环轴承为例,分析内螺纹织构深度对轴承油膜最大压力、油膜承载力、刚度、阻尼等的影响。建立浮环轴承双油膜润滑分析流体动力学模型,利用CFD方法对油膜动态特性进行分析,研究织构深度从6 μm增至12 μm时的油膜特性。结果表明:在轴颈转速1×103~2.1×105 r/min范围内,随着织构深度的增加,油膜最大压力、内外油膜承载力、刚度阻尼系数呈现先增大后减小的趋势;在转速超过1×105 r/min后,织构对油膜动态特性系数提升更明显;与无织构轴承相比,织构深度为8 μm时,油膜承载力、刚度阻尼等动态特性提升最大。研究表明,在合适的织构深度下,织构可以改善油膜特性,提升轴承的运转稳定性,延长工作寿命。  相似文献   

16.
为研究不同的滑移情况对圆柱形凹坑织构滑动轴承摩擦力的影响,建立含有圆柱形凹坑织构的滑动轴承在不同界面滑移状态下的摩擦力计算模型,探究影响织构化滑动轴承摩擦力的参数,并借助ANSYS分析不同滑移情况下界面滑移对圆柱形凹坑织构滑动轴承摩擦力的影响规律。结果表明:织构化滑动轴承的摩擦力主要是由轴颈线速度、油膜滑移比、轴承的进出油口压力、织构处油膜压力、织构深度、油膜厚度和承载力决定;不同滑移情况下织构模型的摩擦力均小于无织构模型;且在上下表面均滑移时,圆柱形凹坑织构在出口位置时表现出最优的承载和减摩效果;适当地增加圆柱形凹坑织构的深度可以改善模型的摩擦性能,但是过深的凹坑织构并不能发挥出其性能。  相似文献   

17.
《轴承》2017,(6)
针对微小气膜间隙下静压气体轴承内部气体的稀薄效应,运用有限体积法离散了体现稀薄效应的滑移修正Reynolds方程,通过MATLAB软件分析稀薄效应下轴承内部压强,并对轴承承载力及最终刚度变化进行研究。通过与不考虑稀薄效应的连续模型对比发现,当气膜间隙小于1μm时,最小气膜间隙处一阶滑移及Wu新滑移模型的气压、承载力及最终刚度远低于连续模型,模型间的结果偏差随气膜间隙的减小而迅速增大。  相似文献   

18.
为提高大型重载静压气体止推轴承承载力和刚度,应用FLUENT15. 0对直径150 mm的双排孔节流静压气体止推轴承进行模拟,分析供气压力和轴承间隙对止推轴承压力分布以及刚度和承载力的影响,对比分析轴承间隙内的压力变化和流动情况,并通过与文献实验值进行对比,验证了该方法的准确性。结果表明:随着供气压力的增大,轴承上相同位置处的气膜压力增大,刚度和承载力呈线性增加;随着轴承间隙的增加,气体流速出现了从亚音速向超音速的跨越,轴承间隙内气膜压力骤减,轴承的刚度先增大后减小,承载力一直减小,因此,应合理选择轴承间隙,以维持较高的承载力和轴承刚度,且同时避免超音速区域的出现。  相似文献   

19.
针对微注塑成形中熔体充模流动行为,运用流体分析软件Fluent,对微壳体塑件熔体充模流动进行了三维稳态模拟。建立了微观黏度模型和壁面滑移模型,运用VOF多相流模型,研究了熔体充满型腔时的稳态三维流场,做出切片图分析了压力场和速度场。通过对考虑和不考虑微尺度影响(微观黏度和壁面滑移)的对比和分析,可以看到考虑微尺度因素影响时充模阻力减小约19%,而速度变化不明显。分析表明微尺度黏度对熔体流动影响显著,有利于微注塑熔体充模,而壁面滑移对充模流动影响较小。  相似文献   

20.
以高速径向动压轴承为研究对象,分析温黏效应对油膜静、动态特性的影响;通过联立求解二维雷诺方程、能量方程和温黏方程,得到油膜压力分布、温度分布和黏度分布,进而求出承载力、摩擦力等静特性系数和刚度系数、阻尼系数。计算结果表明,油膜温度由入口处沿周向上升,在破裂边前达到最大,温度沿轴向变化不大;计入温黏效应,油膜偏位角增大,承载力、摩擦力和侧泄量均减小,且随着转速升高和偏心率增大,变化趋势愈加明显;计入温黏效应,油膜动特性系数明显减小,且转速越高、偏心率越大影响越显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号