首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可倾瓦推力轴承的线性和非线性动特性研究   总被引:3,自引:0,他引:3  
建立可倾瓦推力轴承中油膜对镜板的作用力和油膜作用下可倾瓦的力矩的准静态线性和非线性动力学模型,并且通过对油膜压力进行二阶泰勒级数展开推导出40个油膜对镜板的作用力和油膜作用于可倾瓦的力矩的线性和非线性刚度及阻尼系数,为以后进一步研究推力轴承的稳定性和动特性奠定了基础。  相似文献   

2.
从可倾瓦轴承的应用与检修方面对其结构特点进行了阐述,并详尽介绍了可倾瓦轴承的设计方法及其制造方面的技术关键;并详尽介绍了该轴瓦间隙的测量方法以及维修与操作要求。对保证可倾瓦轴承支撑的高速转子长期平稳运行有着重要意义。  相似文献   

3.
圆形可倾瓦推力轴承性能的研究马希直(陕西工学院机械系723003)王继志周世昌(哈尔滨电工学院)1引言流体动压推力轴承是依靠油膜在相对运动的表面间承载的一种部件。具有摩擦功耗少、承载能力大、运动平稳及使用寿命长等优点。在工业设备中经常应用的推力轴承...  相似文献   

4.
李忠  秦大同 《机械设计》2005,22(1):25-27
在可倾瓦推力轴承系统中,利用薄膜压力和薄膜厚度的Taylor级数展开式,对瞬态雷诺方程进行了求解,求出了薄膜力和瓦块所受力矩的Taylor级数展开式,建立了镜板和可倾瓦自由振动时的微分方程及其特征方程,以出口处与入口处薄膜厚度的比值,外载荷、瓦块倾角、镜板速度和薄膜动力粘度等为变量,经判断霍尔维茨行列式的值大于零时,表明可倾瓦推力轴承系统具有稳定性。一旦瓦块的支点确定后,出口处入口处薄膜厚度的比值即可确定,而与其它参数无关。镜板和瓦块的运动微分方程可进行解耦合求解。  相似文献   

5.
针对机床主轴对推力轴承的高刚度与高精度要求,用可倾瓦块代替部分静压油垫,提出了一种由可倾瓦块和静压油腔联合承载的分布式双向可倾瓦动静压推力轴承.首先建立了分布式双向可倾瓦动静压轴承的润滑模型,提出了基于平衡点性能合成的轴承静动特性计算方法.针对案例轴承对节流器的结构参数进行了优化,分析了载荷、转速、单边间隙和预负荷系数...  相似文献   

6.
采用对油膜压力进行泰勒级数展开的方法,导出了油膜对镜板的作用力和油膜对可倾瓦的力矩的刚度阻尼系数。分析了工况参数如速度、载荷、油温等参数对这些动特性系数的影响。研究表明,如果工况参数使油膜厚度减小,则油膜对镜板的作用力和油膜对可倾瓦的力矩的刚度阻尼系数均会增大。  相似文献   

7.
第三代压水堆核电站中广泛采用的立式水润滑轴承技术是制约我国核电发展的关键点之一,因此建立立式轴承试验台进行相关试验有重要的工程价值。提出一种包含加载激励约束系统、供水密封系统、测量系统的立式水润滑可倾瓦轴承试验台设计方案;通过比较卧式轴承试验台和立式轴承试验台在加载时对于轴承约束的不同,给出适合立式轴承试验台的浮动轴承约束机构方案;按照相似准则对AP1000核主泵立式水润滑可倾瓦轴承进行缩比设计,在满足Summerfeld数、宽径比和间隙比要求的条件下,设计出适合试验研究的轴承试件。试验结果显示:研制的立式四瓦可倾瓦水润滑轴承试验台,能够实现试验轴承在不同转速和加载、激励工况下瓦面温度、供水压力、静载荷、水膜脉动压力、转轴涡动等的测量,运转状态稳定,可以满足立式水润滑可倾瓦轴承动静特性的研究要求。  相似文献   

8.
轴线偏斜对可倾瓦推力轴承润滑性能的影响   总被引:1,自引:0,他引:1  
轴偏斜是实际运行推力滑动轴承中普遍存在的现象,轴心线的偏斜是造成推力轴承失效的主要因为之一.建立可倾瓦推力滑动轴承弹性流体动压润滑的计算模型,计算5组不同轴偏斜角下的轴承润滑性能,并将其与未偏斜时的润滑性能作对比.结果表明,轴偏斜造成每块瓦的油膜厚度、压力分布、瓦面温度均不相同,其中对油膜厚度、压力分布影响很大,对瓦面温度分布影响较小;在全膜润滑状态下,微小的偏斜角变化会造成最小油膜厚度和最大压力明显的变化,但瓦面最高温度变化很小.  相似文献   

9.
可倾瓦径向气体轴承的静动特性的理论研究   总被引:1,自引:0,他引:1  
运用小扰动法和线性PH的思想,采用有限差分亚松弛的数值方法求解了可倾瓦径向动压气体轴承单块瓦的静、动特性方程。通过比较,得出一系列静特性参数和16个动特性参数,并讨论了影响静、动特性参数变化的因素。计算数据表明,轴承数和轴颈偏心率对轴承静态和动态特性的影响较大,并且瓦片参数取值推荐为L/D=1.0,α/β=0.65。  相似文献   

10.
进油压力对可倾瓦径向滑动轴静动特性的影响   总被引:1,自引:2,他引:1  
本研究了进油压力对可倾瓦径向滑动轴承静动行性的影响,采用适当的边界条件,得到轴承的油膜压力分布和压力偏导数分布,进而得到轴承的静动特性系数,本对不同的供油压力,计算可倾瓦轴承的静动特性,并对计算结果进行分析比较,结果显示:进油压力对可倾瓦径向滑动轴承的静动怀具有重要影响。  相似文献   

11.
张新宝  范华显 《机械设计与制造》2021,368(10):186-189,193
提出一种考虑表面形貌时可倾瓦推力轴承润滑特性的数值计算方法,采用分形函数重构了轴承润滑表面轮廓,并将表面轮廓参数整合到可倾瓦推力轴承润滑油膜的数值计算中,探索表面形貌变化对润滑特性影响.结果 表明,随着尺度系数或分形维数增大,楔形油膜的厚度逐渐变小并且油膜的最大压力逐渐增大,油膜的压力分布波动越剧烈;当尺度系数改变时,...  相似文献   

12.
推力可倾瓦轴承支点的优化设计   总被引:1,自引:1,他引:0  
根据力矩平衡原理,给出了可倾瓦推力轴承最佳支点位置的优化设计方法,通过分析比较,表明支点的优化设计有助于提高轴承的使用性能。  相似文献   

13.
胡壮  程军  周青 《机械》2010,37(12):60-62
介绍了透平膨胀机轴承损坏情况,并通过分析找到了轴承损坏的主要原因是由于联锁故障,致使润滑油超温,最终导致轴承损坏。为将该轴承国产化,通过对可倾瓦轴承动/静特性的分析和计算,最终为该轴承确定了轴承间隙、预负荷系数、瓦张角等几个关键的加工制造参数,并最终将该机组轴承进行了国产化改造。、经试运,该轴承工作状态良好。  相似文献   

14.
目前对于可倾瓦轴承的静动特性研究方法,主要是先研究单块瓦片的特性,再通过瓦片子系统的叠加得到轴承整体特性,在计算中忽略了瓦间间隙及瓦块相互之间的流场影响。用瓦块独立计算模型模拟理论计算中只考虑轴瓦与轴颈间隙流场的情况,整体计算模型考虑轴承瓦间间隙的影响,在Fluent软件中计算两种模型的静动特性参数,并进行对比和分析。计算结果表明,瓦间间隙对轴承流场的影响不能忽略,尤其是在涉及温度场计算时,瓦块独立计算模型计算的结果与整体模型计算结果相差很大。  相似文献   

15.
圆形可倾瓦推力轴承润滑的计算机仿真   总被引:1,自引:0,他引:1  
针对大型设备中所应用的圆形可倾瓦推力轴承的润滑问题,采用计算机对圆形可倾瓦推力轴承的润滑性能进行了仿真,通过软件程序计算了单个圆形可倾瓦推力轴承瓦面的油膜形状分布情况、油膜压力分布规律及油膜温度分布规律、功率损耗大小、流量多少等参数。结果表明,通过该仿真程序可模拟出不同工况下圆形可倾瓦推力轴承润滑参数,进而提前实现对圆形可倾瓦推力轴承润滑特性的预测,为大型设备中所使用的圆形可倾瓦推力轴承的设计、润滑和实验提供基础数据。  相似文献   

16.
17.
为了揭示瓦块曲面形貌参数对船舶可倾瓦推力轴承动特性的影响规律,建立可倾瓦推力轴承瞬态热流体动压润滑模型,采用轴向扰动法研究轴承刚度和阻尼系数的计算方法并进行了验证。设计6种瓦面形貌,仿真分析不同形貌类型和瓦面弯曲程度对推力轴承动特性的影响规律。结果表明:推力轴承刚度系数随激振频率的增加而上升,阻尼系数随激振频率的增加而下降;在相同激振频率下,仅考虑一个方向的形貌改变,周向瓦面凸起量的增加可以增加油膜厚度,降低轴承的刚度和阻尼系数,但径向凸起量的增加对轴承的刚度阻尼系数几乎无影响;仅考虑径向凹陷时,阻尼系数随凹陷量的增加而增加并可达到最大;当同时考虑周向和径向的形貌变化时,则周向凸起量是轴承主要的影响因素。  相似文献   

18.
采用数值分析方法研究速度对扇形可倾瓦推力轴承润滑性能的影响,分析速度对最小油膜厚度、最大油膜压力、最高油膜温度、功率损失和流量等参数的影响规律,得到了速度与扇形可倾瓦推力轴润滑参数的关系。结果表明:最小油膜厚度在一定的速度范围内随速度呈线性变化,且随着速度的增加而增加;最大油膜压力随速度的增大产生波动性变化,但最终逐渐稳定到某一具体值;随着速度的增加温度升高;瓦功耗和瓦流量随速度的增加基本上呈线性增加变化。  相似文献   

19.
可倾瓦推力轴承在变载荷下的瞬态润滑性能研究   总被引:1,自引:0,他引:1  
李忠  秦大同 《中国机械工程》2004,15(15):1326-1328
建立了可倾瓦推力轴承中的油膜厚度方程、瞬态油膜压力方程、瞬态油膜温度方程以及求解油膜力和瓦块力矩的数学模型,提出了基本方程的数值求解过程,研究了可倾瓦推力轴承变载荷下的瞬态润滑性能。结果表明,随着载荷的增大,油膜厚度减小,油膜温升增大。在达到同样载荷时,对于较大的载荷变化率,其油膜温升反而较小。另外,随着载荷的增大,瓦块的倾角也.随之逐渐增大。  相似文献   

20.
本文推导了可倾瓦气体动压轴承的瓦背气膜动特性系数的计算公式,并介绍限计算方法,通过计算结果分析,对弹性支在和刚怀支承的瓦块的瓦背气膜效应进行了深入探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号