首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以三胶筒封隔器为研究对象,应用ANSYS有限元软件建立了封隔器密封元件的计算模型,分析了不同坐封载荷下胶筒的变形、胶筒与套管接触压力的变化规律。计算结果表明,弹性模量相对较小的中胶筒首先与套管接触,其次是靠近载荷施加端的胶筒与套管接触,远离载荷施加端的胶筒最后与套管接触。三段胶筒与套管的接触压力都随坐封载荷的增大而增大,在不同坐封载荷下,靠近载荷施加端的胶筒与套管的接触压力均大于中间胶筒和远离载荷施加端胶筒的压力,靠近载荷施加端的胶筒与套管的接触压力越大,封隔器的密封性能越好。  相似文献   

2.
以高温、高压深井试油作业中常用的RTTS封隔器为研究对象,考虑封隔器的材料、几何、接触非线性特征,应用非线性有限元理论,以Mooney-Rivlin应变能函数建立非线性材料模型,综合运用杂交网格、非线性自适应区域、罚刚度算法等处理几何、接触非线性导致的难收敛问题。建立RTTS封隔器三维有限元模型,应用控制变量法研究封隔器密封性能的影响因素。研究发现:胶筒的等效应力及接触压力随坐封载荷的线性增大而非线性增大;随着胶筒个数的增加,胶筒接触压力沿远离压缩端方向依次降低;胶筒的接触压力随摩擦因数、材料硬度的增加而非线性降低。该研究结果可以为封隔器胶筒的改进设计提供参考。  相似文献   

3.
双梯度钻井技术可解决深海油气和浅层水合物开发面临的疏松表层安全钻进和地层漏失压力低等难题。为研究双梯度钻井套管内压力隔断封隔器胶筒的力学性能,利用有限元仿真软件,分析不同摩擦因数、胶筒厚度、工作压力、环空间隙等因素作用下对胶筒变形的影响。采用正交试验对四种因素作用下胶筒的最大Mises应力值与接触压力值进行极差分析。结果表明:摩擦因数为0.3时胶筒与套管间接触压力取得较大值,双梯度钻井封隔器胶筒厚度优选为15 mm;在有效封隔2 MPa工作压力前提下,得出封隔器胶筒随钻柱滑动的最小摩擦力33 845 N;影响胶筒最大Mises应力的主要因素为工作压力与环空间隙,影响胶筒与套管间最大接触压力的主要因素为工作压力与胶筒厚度。  相似文献   

4.
为探讨深水测试双封隔器由密闭环空压力变化引起的变形与强度问题,建立双封隔器胶筒结构的力学分析模型。根据工作过程中封隔器间密闭环空压力的变化,对胶筒的密封性能进行分析,得到各胶筒的应变量、等效应力以及接触应力的变化情况。分析采用胶筒不同圆形倒角参数时封隔器胶筒与套管的接触特性,研究胶筒倒角参数对封隔器密封性能的影响,得出封隔器的优化结构参数。结果显示:各胶筒的应变量、等效应力以及接触应力均随密闭环空压力的增大而增大,其中下胶筒的增大幅度最明显;各胶筒变形量随着胶筒倒角的增大无明显变化,但等效应力随着胶筒倒角的增大均减小,而随着胶筒倒角的增大上胶筒和中胶筒的接触应力均增大,下胶筒的接触应力先增大后减小。因此,一定程度上增大胶筒倒角有利于提升封隔器的密封性能,倒角半径为0.75 mm时为最优结构。  相似文献   

5.
封隔器是压裂酸化过程中的重要工具之一,而胶筒是封隔器的核心零部件,胶筒的好坏直接决定了封隔器的工作性能。针对压裂酸化用某Y344型封隔器利用有限元技术开展密封结构性能分析与优化研究,获得了胶筒对套管的接触压力分布规律,考虑接触压力与面积两个因素建立了结构密封性能评价方法,分析了胶筒长度与组数变化对密封性能的影响,为封隔器产品开发与使用提供了理论基础。  相似文献   

6.
封隔器胶筒大变形的粘-滑摩擦接触分析   总被引:2,自引:0,他引:2  
采用罚函数方法,结合橡胶大变形问题的增量分析过程,考虑封隔器胶筒与套管之间的粘-滑摩擦接触问题,研究摩擦因数变化对接触压力的影响规律。给出解决封隔器胶筒摩擦接触问题的数值方法,并在此基础上对胶筒与套管之间的摩擦接触进行有限元分析,分析得到采用大变形非线性粘弹性理论和接触摩擦描述的有限元模型,可以比较准确模拟封隔器在坐封和工作过程中胶筒接触压力和变彤的情况,结果表明,摩擦因数变化对封隔器胶筒的接触压力有着较明显的影响。  相似文献   

7.
封隔器胶筒大变形摩擦接触的有限元分析   总被引:3,自引:0,他引:3  
关于封隔器胶筒接触压力的求解,目前文献所给出的计算公式均没有考虑摩擦因数对封隔器胶筒接触压力的影响,而摩擦因数对接触压力有较明显的影响。针对胶筒与套管之间的粘-滑摩擦接触问题,采用罚函数技术,结合橡胶大变形问题的增量分析过程,给出解决封隔器胶筒摩擦接触问题的数值方法,并在此基础上对胶筒与套管之间的摩擦接触进行有限元分析。计算结果表明,采用大变形非线性粘弹性理论和接触摩擦描述的有限元模拟技术,可以比较准确地模拟摩擦因数对封隔器胶筒接触压力的影响,所得的结果比经典理论公式的分析结果的精度更高,具有理论价值和工程应用价值,可为胶筒的优化设计提供一定的依据。  相似文献   

8.
以K344型扩张式封隔器为研究对象,建立了裸眼井中封隔器密封元件计算模型,应用有限元软件ANSYS模拟分析了坐封过程中胶筒与井壁接触压力的变化规律。结果表明:随载荷增加,胶筒与井壁接触压力逐渐增加,增加趋势先较快后相对减缓;载荷较小时,胶筒肩部和中部与井壁的接触压力基本相同,随载荷增加,胶筒肩部与井壁接触压力将大于胶筒中部与井壁接触压力。胶筒肩部在密封井壁环空压差时起关键作用,胶筒肩部与井壁的接触压力越大,封隔器密封性能越好。  相似文献   

9.
针对水平井压缩式裸眼封隔器存在的密封性差、坐封力低、胶筒与井壁间存在间隙等问题,对其密封结构进行改进与优化,设计出一种凸球形隔环和凹球形胶筒组相结合的新型密封结构。运用 ABAQUS 软件模拟密封结构封隔器胶筒的坐封情况,获得胶筒组轴向接触压力的分布规律,并分析胶筒硬度和摩擦因数对接触压力的影响。结果表明:新型密封结构凸球形隔环在轴向压缩胶筒的同时也起径向压缩作用,提高了胶筒与井壁和中心管间的接触压力,增强了封隔器的密封性能;胶筒与井壁间的接触压力随着胶筒硬度和摩擦因数的增大而增大,但过大的摩擦因数会导致下胶筒接触压力明显减小,应选择硬度和摩擦因数合适的胶筒,从而保证封隔器的密封可靠性。  相似文献   

10.
利用有限元分析软件建立某压缩式封隔器胶筒的二维模型,分析53.85 MPa轴向载荷作用下,胶筒的端面倾斜角、胶筒子厚度、筒高和摩擦因数对胶筒与套管之间最大接触应力的影响。结果表明:最大接触应力随端面角的增加呈W形分布,随子厚度的增加先增大后减小最后趋于稳定,随胶筒筒高的的增大而减小,随摩擦因数的增大先缓慢减小后急剧增大;端面角为45°,胶筒子厚度取9 mm,筒高介于80~120 mm,摩擦因数在0.1~0.3范围内时,研究的封隔器的胶筒与套管之间最大接触应力较高,胶筒的密封性能较好。基于有限元分析结果,设计响应曲面法实验,研究多因子不同水平下胶筒最大接触压力响应的变化情况。结果表明:对最大接触应力影响最大的因子是摩擦因数,最小的是筒高,交互项端面倾斜角和筒高、端面倾斜角和摩擦因数、胶筒子厚度和擦因数、筒高和摩擦因数对响应具有显著性影响;胶筒密封性能最佳的因子组合方案为端面倾斜角为48.2°、子厚度为9 mm、筒高为90 mm、摩擦因数为0.1。  相似文献   

11.
《机械强度》2016,(5):1029-1034
为研究胶筒与套管之间摩擦接触问题,运用MMW-1型立式万能摩擦磨损实验机对胶筒与套管之间摩擦因数进行了测定;以测定数据为依据,基于橡胶材料Mooney-Rivlin模型,采用罚函数与库伦摩擦原理,考虑橡胶大变形非线性,对胶筒与套管摩擦接触问题进行了数值模拟。结果表明:接触面在无润滑剂下的摩擦因数最大,为0.515,油基润滑下最小,为0.122,其余润滑条件下介于0.122~0.515之间;随着摩擦因数的增大,摩擦应力逐渐增大,接触压力逐渐减小,胶筒等效应力先增大后减小,摩擦因数为0.3时,可以得到较好的接触压力;随着轴向载荷的增大,接触压力、摩擦应力及胶筒等效应力逐渐增加;在轴向载荷不变下,胶筒厚度对接触问题影响较大;最后对胶筒的结构进行了优化设计,得到全段圆弧设计为更好的胶筒结构。  相似文献   

12.
利用有限元分析软件建立封隔器胶筒模型,分析单一轴向载荷和轴向、扭转载荷共同作用下,胶筒与套管之间的接触应力及其沿轴向的分布规律,最大接触应力随胶筒端面角、子厚度、筒高3个结构参数和摩擦因数的变化,以及施加不同扭转载荷时对胶筒密封性能的影响。研究结果表明:在单一轴向载荷作用下,最大接触应力随倾斜角度增大先减小后增大,随子厚度的增加先增加后减小,随筒高的增加而减小,随摩擦因数增大先减小后增大;施加扭转载荷后,不同端面角、子厚度、筒高下胶筒的最大接触应力整体降低且波动较大,随摩擦因数增大胶筒接触面之间的摩擦力增大,加速了胶筒磨损和老化;不同扭转载荷作用下胶筒最大接触应力值波动较大,导致密封性能不稳定。因此,扭转载荷使得胶筒密封性降低,导致最大接触应力波动较大,使胶筒的密封性能存在不稳定性。  相似文献   

13.
封隔器参数的选取对其工作性能至关重要,合理选择胶筒的形状尺寸可有效避免因应力集中、残余变形而导致的密封失效或起出困难。讨论了密封胶筒端面倒角、胶筒长度对接触应力的影响,进而分析两者对胶筒密封性能的影响。结果表明,40°~50°区间的倒角有助于提高胶筒与套管内壁之间的接触应力;增加密封胶筒长度,会造成接触应力下降。  相似文献   

14.
基于封隔器的密封性判据和结构设计方法,在对遇油膨胀封隔器的吸油膨胀进行热膨胀描述的基础上,通过ANSYS有限元计算遇油膨胀封隔器在井下的接触压力,建立封隔器封隔性能分别与胶筒长度、厚度关系的计算模型。结果表明,遇油膨胀橡胶的热膨胀与吸油膨胀相一致,通过膨胀橡胶的热膨胀分析可以合理描述出膨胀橡胶吸油膨胀后的状态。有限元分析表明,随着胶筒长度和过盈厚度的增大,封隔器的封隔性能都呈指数规律增大。  相似文献   

15.
为了研究注水封隔器在工作过程中胶筒接触应力变化规律,以Y341注水封隔器为研究对象,利用管柱力学理论得到注水工况封隔器所受轴向力,运用ABAQUS有限元分析软件建立三维有限元分析模型,采用Yeoh模型得到橡胶模拟参数,对封隔器胶筒进行有限元三维应力仿真分析。分析表明:3个胶筒在坐封过程中整体受力趋势相同,在轴向坐封载荷作用下受力不均,下胶筒受力变形最大且肩部应力集中;随着轴向载荷的增大,肩部所受套管正压力不断上升;在不同轴向力作用下,封隔器胶筒对套管施加的力会有变化,套管受力与轴向拉力成负相关。通过有限元仿真分析技术,得到封隔器胶筒在坐封及注水工况下的力学规律,为封隔器设计及优化提供理论依据。  相似文献   

16.
为探讨封隔压差和封隔间隙对封隔器胶筒封隔性能的影响,应用有限元分析软件,研究不同封隔压差和间隙下胶筒的Von Mises应力分布、胶筒与套管壁间接触应力的分布以及胶筒的变形情况。结果表明:随着封隔压差的增大,胶筒上端部的Von Mises应力值不断增大,胶筒失效的可能性增加,但胶筒与套管壁的接触应力值增大,胶筒的封隔能力增强;随着封隔间隙的增大,胶筒上端Von Mises应力值增大,胶筒剪切失效的可能性增加,且胶筒与套管壁的接触应力减小,胶筒的封隔能力下降。设计出一种蜗形状防突装置,分析其对胶筒封隔性能的影响。结果表明:蜗形保护环能有效地防止胶筒端部突出,且胶筒的应力分布更均匀,胶筒与套管壁间的接触应力值更大,提高了胶筒的封隔能力。  相似文献   

17.
为探讨封隔压差和封隔间隙对封隔器胶筒封隔性能的影响,应用有限元分析软件,研究不同封隔压差和间隙下胶筒的Von Mises应力分布、胶筒与套管壁间接触应力的分布以及胶筒的变形情况。结果表明:随着封隔压差的增大,胶筒上端部的Von Mises应力值不断增大,胶筒失效的可能性增加,但胶筒与套管壁的接触应力值增大,胶筒的封隔能力增强;随着封隔间隙的增大,胶筒上端Von Mises应力值增大,胶筒剪切失效的可能性增加,且胶筒与套管壁的接触应力减小,胶筒的封隔能力下降。设计出一种蜗形状防突装置,分析其对胶筒封隔性能的影响。结果表明:蜗形保护环能有效地防止胶筒端部突出,且胶筒的应力分布更均匀,胶筒与套管壁间的接触应力值更大,提高了胶筒的封隔能力。  相似文献   

18.
根据悬挂式封隔器密封胶筒的结构和工作特点,分析封隔器在初封和工作阶段胶筒的密封原理及其相应的自由变形、约束变形和稳定变形3种状况下的密封特性。建立胶筒密封性能分析的理论模型,应用压力法分析胶筒在约束变形和稳定变形阶段的材料、几何和应力变化等非线性关系,得出密封面接触应力分布的计算模型,并确立应用封隔器胶筒密封面接触应力判断胶筒密封性能的判别准则。建立悬挂式封隔器胶筒密封的有限元模型,有限元仿真与数值计算得到的密封面接触压力的大小和分布形状具有较好的一致性,证明了建立的理论模型的有效性。  相似文献   

19.
建立无隔水管泥浆回收钻井系统密封胶芯及钻具二维轴对称有限元模型,使用非线性有限元方法计算密封胶芯与钻具间的接触压力大小,验证密封胶芯在无隔水管泥浆回收钻井中的可行性。研究摩擦因数变化对接触压力的影响,分析密封胶芯Mises应力峰值和钻具与胶芯间的摩擦力分布规律。结果表明:摩擦因数与胶芯密封面和钻具间的接触压力成非线性关系,胶芯主密封段接触压力随摩擦因数增大而减小,而胶芯锥形密封段和凸鼻形密封段的接触压力随摩擦因数增大而增大;胶芯Mises应力随摩擦因数增大而变大,且胶芯与钻杆接头上端接触时Mises应力峰值最大,容易导致胶芯破坏;胶芯与钻具间的接触面积基本不随摩擦因数变化而变化,摩擦力随摩擦因数的增大近似成线性增加;胶芯与钻杆接头接触时,摩擦力较大且增长显著,说明胶芯与接头接触时更容易发生磨损。  相似文献   

20.
为解决高温高压井中封隔器胶筒的失效问题,提高封隔器胶筒密封性能,提出一种基于纳米流控系统的封隔器胶筒材料。以蜂窝状结构为支撑骨架,在蜂窝内包覆憎水性纳米多孔介质与非浸润性功能流体的混合物,制备一种封隔器胶筒材料,该封隔器胶筒材料可随着外压的增大/减小,通过体系内液体流入/流出多孔材料孔道来调节自身体积变化,平衡外界压变。以ZSM-5型沸石-水系统为填充介质,实验获得不同环境温度下ZSM-5型沸石-水基封隔器胶筒材料的压力-体积变化关系。结果表明,当环境温度在30~75℃范围内变化时,随着温度的提升,该封隔器胶筒材料的上压力阈值减小、下压力阈值增大,服役时的压力将稳定在更小区间范围内;其有效变形能力也将随着温度的升高而增大,体现出良好的密封性能,可减小油套环空密封失效风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号