共查询到15条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
利用KIVA-3V程序对液态DME发动机进行了数值仿真计算,通过改变二甲醚喷射量研究了不同负荷下发动机的缸内工作过程,得到了缸内流动、平均性能曲线、温度、压力场以及NO、CO排放情况等实时数据信息.经过可视化后处理程序对比分析表明:二甲醚发动机负荷越大,缸内压力和温度越高,NO和CO排放量也越大. 相似文献
5.
6.
二甲醚发动机燃烧特性的试验与数值模拟研究 总被引:6,自引:0,他引:6
在一台直喷式压燃发动机上开展了二甲醚燃烧与排放特性的试验与数值模拟研究。测量了二甲醚在高压燃油泵内的泄漏量及其与发动机转速之间的定量关系,并就发动机分别燃用二甲醚和柴油的运转性能进行了对比试验研究,结果表明,发动机燃用二甲醚要比燃用柴油具有更好的性能与排放水平;另从二甲醚低温着火的化学反应机理人手,开展了其自燃着火过程的数值模拟研究,进而建立了计及温度、压力和燃空当量比因素的DME滞燃期数据库;通过将该数据库与发动机循环模拟程序相耦合,对DME发动机的运转性能进行了变参数预测分析,预测结果与试验结果吻合较好。 相似文献
7.
双燃料发动机的燃烧模型 总被引:3,自引:0,他引:3
针对双燃料发动机燃烧特性,建立了柴油喷雾扩散燃烧子模型和气体燃烧均质混合气火焰传播燃烧子模型,应用该模型研究了双燃料发动机燃烧机理,计算结果和实验结果相当吻合。计算表明:当引燃柴油比例较大时,双燃料发动机燃烧过程以喷雾混合控制燃烧为主,柴油喷雾扩散燃烧模型与实测较吻合;当柴油比例较小时,该过程以均质混合气火焰传播燃烧为主,均质混合气火焰传播燃烧模型与实测软吻合。计算结果表明,引燃柴油量对双燃料发动机性能影响较大,引燃柴油减少,着火滞燃期延长,缸内最大爆发压力升高。 相似文献
8.
二甲醚发动机采用PCCI-DI燃烧方式的研究 总被引:6,自引:0,他引:6
开展了DME PCCI-DI发动机燃烧和排放特性的试验研究,并与DME HCCI发动机的性能进行了对比.结果表明:DME PCCI-DI发动机的输出功率在一定程度仍然受到均质浓混合气燃烧爆震的限制,但发动机的功率输出较DME HCCI发动机有较大的提高.HCCI发动机的Nox的排放能维持在非常低的水平,但其HC和CO排放远高于DME PCCI-DI发动机,且其只能在很窄的范围内工作.由于DME PCCI-DI发动机具有一定的预混燃烧量,从而使扩散燃烧速率加快,是一种具有最高爆发压力较小、压力升高率较低以及低燃烧噪声的一种燃烧模式.在目前HCCI发动机没有完全成熟的条件下,PCCI-DI模式是兼顾HCCI燃烧优点,拓宽HCCI发动机运转范围的较为合理的一种燃烧模式. 相似文献
9.
在可视化光学发动机上进行了二甲醚(DME)喷雾燃烧过程的试验,应用高速数字摄像机拍摄了柴油和二甲醚缸内喷雾燃烧过程,并应用计算机高速采集系统同步测量了缸内压力.高速摄影照片表明,二甲醚一离开喷嘴就迅速蒸发,可以明显看到缸内气流运动对油速“核心”的吹散作用,并造成二甲醚的碰壁油量较柴油的少.和柴油相比,二甲醚着火滞燃期短,着火位置更靠近燃烧室壁面,着火面大,燃烧初期火焰发展迅速.二甲醚压升滞燃期比发火滞燃期明显减小,而柴油两者几乎相等.在相同热值燃料条件下,发动机燃用柴油和二甲醚时,缸内最大爆发压力、燃烧放热率和平均指示压力几乎一样.高速摄影很难拍摄到二甲醚燃烧初期和后期的火焰照片.研究结果还表明,较小的涡流比有利于提高二甲醚发动机的性能。 相似文献
10.
在一台6缸增压电控共轨二甲醚发动机上进行试验,研究了预喷时刻、预喷燃料量、喷射压力、主喷时刻等喷射参数对二甲醚部分预混合充量压缩燃烧(PPCCI)发动机燃烧与排放特性的影响。试验结果表明:随预喷时刻提前,缸内压力峰值降低,二甲醚发动机缸内燃烧由两阶段放热转变为PPCCI三阶段放热,氮氧化物(NOx)排放显著降低,HC和CO排放升高;随预喷射燃料量增加,缸内压力峰值及预混合燃烧的冷焰反应和热焰反应速率明显增大,NOx排放逐渐降低,HC和CO排放显著升高;随喷射压力降低,预混合燃烧热焰反应速率增加,主喷扩散燃烧始点推迟,扩散燃烧放热率峰值和NOx排放明显降低,HC和CO排放升高;随主喷时刻推迟,预喷预混合燃烧几乎没有变化,主喷扩散燃烧延后,缸内压力峰值和放热率峰值降低,NOx排放显著降低,HC和CO排放升高。 相似文献
11.
在一台安装有进气道喷射甲烷和缸内直喷二甲醚(DME)的单缸光学发动机上,研究了DME喷射时刻对甲烷空气稀混合气压缩着火燃烧过程和火焰发展过程的影响。结果表明:在直喷DME下,气缸内的燃烧放热过程主要受到DME直喷时刻的控制。在-60°~-40°喷射DME时,放热率曲线呈单峰,在-30°~-15°喷射DME时,放热率曲线呈两阶段放热特征。气缸内的燃烧呈现自燃+火焰传播的特征。此外,DME喷射时刻还影响着火点的位置。随着DME喷射时刻的推迟,着火区域分布更加集中。与火花点燃甲烷燃烧相比,在压缩着火方式下,直喷DME能大幅提高甲烷/空气混合气燃烧初期的火焰传播速度,使燃烧放热过程加快。 相似文献
12.
13.
直喷式柴油机燃烧过程模拟与分析(二) 总被引:1,自引:0,他引:1
利用IIVA-Ⅱ程序模拟计算直喷式柴油机燃用柴油时缸内的燃烧过程,如混合气形成过程、缸内温度场、主要有害物质NOx的生成浓度分布等。通过对直喷式柴油机燃用柴油时燃烧过程的模拟计算与分析,对模拟燃用绿色能源-二甲醚的燃烧过程提出了一些建议。 相似文献
14.
15.
采用直接数值模拟方法对二甲醚(Dimethyl Ether,DME)射流推举燃烧进行了研究(DNS),分析了DME射流推举火焰结构、燃烧模式和推举稳定机理。数值模拟工况条件为:燃料由狭缝射出,初始温度500 K,射流速度138 m/s;伴流空气的初始温度1 000 K,流速3 m/s,压力为0506 6 MPa。研究表明:DME射流推举火焰与传统的边火焰有很大不同,在射流核心区内存在1条低温放热分支以及紧随其后的中温着火分支,并且推举稳定点位于贫燃侧;DME湍流射流推举火焰包含冷焰反应区(Cool Flame Zone,CFZ)、中温反应区(Intermediate Temperature Zone,ITZ)、富燃高温区(High Temperature Rich Burn Zone,HTR)以及贫燃高温区(High Temperature Lean Burn Zone,HTL)4种模式;在CFZ与ITZ区内湍流混合占主导,并且湍流混合会抑制低温放热;在HTR与HTL区内放热速率占主导地位,但是湍流会显著增强超贫燃区间内的高温放热速率;大部分热量在HTL和HTR区产生,而CFZ和ITZ区对总体产热的贡献微乎其微,但是所产生的中低温组分加快了高温着火过程;射流推举稳定性由贫燃侧的高温自着火反应机制所控制。 相似文献