共查询到19条相似文献,搜索用时 46 毫秒
1.
为了对比不同结构形式的垂直轴潮流能水轮机的水动力性能,对三叶片-单列叶片式与六叶片-双列叶片式垂直轴型水轮机进行结构参数设计,采用CFD软件对处于特殊旋转角下的单列叶片式和双列叶片式垂直轴潮流能水轮机进行了2D流场计算,并对压力云图和流速场图进行了对比分析。结果表明:在设计流速2.5 m/s下,双列叶片式水轮机叶片受到的压力的合力大于单列叶片式,即自启动性能优于单列叶片式;但是双列叶片式水轮机在轴线旋转角为0°、60°时,叶片间会产生流场相互干扰的问题,在轴线旋转角为30°、90°时,叶片出现尾流脱节、尾流紊乱的现象。 相似文献
2.
3.
4.
5.
6.
为了解不对称翼型叶片的正反安装对垂直轴潮流水轮机水动力性能的影响,运用CFD软件技术,建立了不对称叶片正反安装的潮流水轮机模型,分析了不对称叶片在正反两种安装方式下,叶片压力面和吸力面压力系数随叶片相位角不同而发生的变化,同时利用效率公式计算得到了效率。结果表明,叶片的正反安装对水轮机的水动力性能影响较大,当叶片正装即不对称翼型叶片凸向朝外时,垂直轴潮流水轮机效率优于叶片反装时,叶片在相位角为0°~120°区间转动时,转轮扭矩先增大后减小,在60°、180°、300°时得到最大扭矩。 相似文献
7.
潮流能水轮发电机是潮流能电站的核心技术装备之一,海水中固体颗粒的冲蚀损伤对水轮机叶片造成的伤害将直接影响机组的发电效率和运行的稳定性。利用计算机仿真技术,对潮流能水轮机叶片进行数值模拟,分析叶片的冲蚀速率和颗粒相的体积分数,判断叶片受损严重部位,对冲蚀性能进行评价。研究结果表明,该潮流能水轮机叶片的迎流面叶尖外边缘位置受损最严重。随着流速的增大,造成的冲蚀损伤几乎成倍数式增加;颗粒浓度造成的冲蚀损伤大小与速度呈正相关。研究结果对水轮机叶片结构的冲蚀性能评价具有指导意义,也可为结构设计的抗冲蚀性能优化提供参考。 相似文献
8.
垂直轴潮流水轮机数值模拟研究 总被引:4,自引:0,他引:4
采用单向耦合欧拉-拉格朗日方法对垂直轴潮流水轮机( Vertical Axis Tidal Turbine)水动力性能和尾迹进行数值模拟研究,其中连续相采用雷诺平均Navier-Stocks方程(RANS)结合SST湍流模型求解,分散相颗粒的运动轨迹通过牛顿第二定律确定,叶片的尾迹通过颗粒的轨迹示踪.以文献[10]中在水槽中进行的垂直轴风力机试验为计算模型.将模拟结果与试验结果进行对比,叶片受力和叶片尾迹均与试验结果符合很好;对比前人的结果得到的叶片在不同位置角的瞬时受力规律也更加接近试验测得规律. 相似文献
9.
10.
11.
Three-dimensional effects in studying a vertical axis tidal current turbine are modeled using a newly developed vortex method. The effects on predicting power output and wake trajectory are analyzed in particular. The numerical results suggest that three-dimensional effects are not significant when the height of the turbine is more than seven times the turbine radius. Further discussions are presented focusing on the relationship between the turbine height and the angle of attack and the induced velocity on a blade of the turbine without arms. Besides the three-dimensional effects, arms effects are quantified with an analytical derivation of the polynomial formula of the relationship between arm effects and the tip speed ratio of the turbine. Such a formula provides a correction for existing numerical models to predict the power output of a turbine. Moreover, a series towing tank tests are conducted to study the three-dimensional effects as well as the arm effects. Good agreements are achieved between the results obtained with numerical calculations with the arm effects correction and the towing tank tests. Finally, three-dimensional effects are examined experimentally together with the arm effects by using an end-plate test, which suggests that the combinational effect is rather minimal. For turbine designers at the early design stage, we recommend that a two-dimensional model is acceptable considering the high cost of the three-dimensional model. 相似文献
12.
13.
This paper is concerned with the study of a novel design of turbine for tidal currents or fast-flowing streams, called the ‘Hunter Turbine’. The turbine consists of several flapping blades that are hinged on a revolving drum. Flow visualization experiments on a small model were conducted to provide some basic rules from which the movement of every flapping blade at every drum position could be determined. Two-dimensional quasi-steady CFD was then used to obtain detailed information about the flow field, including pressure and velocity contours, and the pressure distribution on the surface of the blades. It was found that the Hunter Turbine gives very satisfactory performance over a restricted range of flow coefficient. Under these conditions, the kinetic energy of the incident flow can be effectively transferred into the movement of the rotor, so that the average power coefficient (based on the projected area with an open blade) reaches a value of 0.19. Using the CFD results, a polynomial function is fitted to the dependence of an effective force coefficient for all blades on the rotational angle and the flow coefficient. The net forces acting on the surfaces of the blades can thus be interpolated between the calculated data points. 相似文献
14.
《可再生能源》2016,(11)
垂直轴水轮机作为重要的潮流能捕获装置,相比于水平轴水轮机,它具有结构简单、适应任意水流等优点,但获能效率较低。为了增大垂直轴水轮机的获能效率,文章提出了一种导流涵道装置。采用CFD方法研究了其增速性能,并探究了水轮机在导流涵道下的输出扭矩特性,最后讨论了水轮机与导流涵道之间的间距对获能效率和转矩的影响。研究表明:导流涵道在一定程度上增大了来流的速度,涵道中心处速度可增大至原来的2倍。在导流涵道作用下,水轮机转矩脉动系数减小了0.474。水轮机与导流涵道的间距对效率与转矩产生了显著的影响,当间距为0.175倍水轮机直径时,其能源利用率达到最大,同时转矩系数在0.1倍直径时降至最小。 相似文献
15.
文章以水平轴潮流能水轮机为研究对象,采用CFD方法对水轮机的尾流特性进行分析。通过网格无关性验证与已发表文献的比对,验证了CFD方法的精度。通过不同叶尖速比下的水轮机性能曲线,进一步分析了水轮机的尾流场速度分布特征。通过分析尾流场中轴向、径向和切向速度的分布特点,研究了水平轴潮流能水轮机尾流的微观结构特征及其演化规律。研究结果表明:尾流横向影响范围在以中心轴线为中心的1D范围内;在近尾流处,尾流速度具有周期性,轴向速度随着尾流下移而逐渐减小;在尾流旋转过程中,径向速度向外扩散并逐渐衰减,切向速度分量沿轴向逐渐衰减。 相似文献
16.
The present study aims to understand the energy conversion mechanism of a 100 kW horizontal axis tidal stream turbine by analyzing thrust, torque, and wake flow measurements. The scale ratio of the turbine model was 1/20 and model tests for power and wake measurements were conducted in a towing tank facility. Wake fields were measured by a towed underwater stereoscopic particle image velocimetry (SPIV) system. The chord-length based Reynolds number at 40% of the radius of the turbine ranged from 53,000 to 63,000 in the test conditions. The turbine model showed the highest power coefficient at a tip speed ratio (TSR) of 3.5, and the magnitude of power coefficient was 0.278. Three TSR conditions were selected for SPIV measurement after power measurement tests, representing heavy loading, highest efficiency, and light loading, respectively. In the wake field measurement results, conversion of kinetic energy of the turbine wake was investigated, decomposing it into effectively extracted work, loss due to the drag on the turbine system, kinetic energy of the time-mean axial flow, local flow structures, turbulence, and secondary flow loss. In high TSR conditions with a small angle of attack onto the turbine blade, the secondary flow loss was minimized. 相似文献
17.
This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance.Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance.The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper. 相似文献
18.
高速双轮竖轴风力发电机 总被引:1,自引:1,他引:0
<正>一前言据2009年8月11日《科技日报》报道,南非瓦尔理工大学创新中心主任扬·约斯特教授发明了一种新型结构的垂直轴风力发电机。约斯特称,与一般垂直轴风力发电机不同,他的新型设计使叶片 相似文献
19.
The results of a detailed experimental investigation of the near-wake (up to seven turbine diameters downstream) of a model horizontal axis tidal turbine (HATT) device in a large-scale recirculating water channel facility are reported. An Acoustic Doppler Velocimeter is used to provide detailed three-dimensional mean and turbulent flow field information at five different depths across the full width of the channel downstream of the turbine, giving the most complete three-dimensional velocities and Reynolds normal and shear stress data set yet available. In addition the Reynolds-stress anisotropy tensor is used to illustrate the degree of anisotropy of the Reynolds stress within the turbine's wake. These results reveal the strongly anisotropic nature of the near-wake turbulence suggesting isotropic turbulence models should not be used to model near-wake dynamics. Finally the power-law decay rates of the maximum normalised turbulent kinetic energy differ significantly from those found downstream of grids, meshes or perforated disks, suggesting that previous modelling approaches, which neglected swirl effects and modelled the turbine by absorption discs, may significantly over predict the turbulent kinetic energy decay rate of HATT wakes. 相似文献