首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Cln3 cyclin homolog of Saccharomyces cerevisiae functions to promote cell cycle START for only a short time following its synthesis. Cln3 protein is highly unstable and is stabilized by C-terminal truncation. Cln3 binds to Cdc28, a protein kinase catalytic subunit essential for cell cycle START, and Cln3 instability requires Cdc28 activity. The long functional lifetime and the hyperactivity of C-terminally truncated Cln3 (Cln3-2) relative to those of full-length Cln3 are affected by mutations in CDC28: the functional lifetime of Cln3-2 is drastically reduced by the cdc28-13 mutation at the permissive temperature, and the cdc28-4 mutation at the permissive temperature completely blocks the function of Cln3-2 while only partially reducing the function of full-length Cln3. Thus, sequences in the C-terminal third of Cln3 might help stabilize functional Cdc28-Cln3 association, as well as decreasing the lifetime of the Cln3 protein. These and other results strongly support the idea that Cln proteins function to activate Cdc28 at START.  相似文献   

2.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2. We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25, that it responds to altered levels of both the mitotic inhibitor p107wee1 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

3.
We studied the effect of doxorubicin (Dox) on cell cycle progression and its correlation with DNA damage and cytotoxicity in p53-mutant P388 cells. P388 cells synchronized in S and G2/M phases were > 3-fold more sensitive to Dox than were cells in G1 phase (Dox ID50 = 0.50 +/- 0.16 microM in cells synchronized in S phase versus 1.64 +/- 0.12 microM in asynchronized cells; drug exposure, 1 hr). Treatment of synchronized cells in early S phase with 1 microM Dox (2 x ID50) for 1 hr induced a marked cell arrest at G2/M phase at 6-12 hr after drug incubation. We then studied the effect of Dox on the p34cdc2/cyclin B1 complex because it plays a key role in regulating G2/M phase transition. In untreated control P388 cells, p34cdc2 kinase localizes in the nucleus and cytoplasms, particularly in the centrosomes, and p34cdc2 kinase activity is dependent on cell cycle progression, with the enzyme activity increasing steadily from G1/S to G2/M and markedly declining thereafter. Treatment of synchronized P388 cells in early S phase with 1 microM Dox for 1 hr did not affect the pattern of subcellular distribution of the enzyme but completely abrogated its function for > or = 10 hr. In a cell-free system, Dox did not inhibit p34cdc2 kinase activity, indicating that is has no direct effect on the enzyme function. In whole cells, Dox treatment prevented p34cdc2 kinase dephosphorylation without altering its synthesis, and this effect was due to neither down-regulation of cdc25C nor inhibition of protein-tyrosine phosphatase activity. In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting its degradation. A good correlation was found between extent of DNA double-strand breaks and p34cdc2 kinase activity inhibition. Our results suggest that anthracycline-induced cytotoxicity is cell cycle dependent and is mediated, at least in part, by disturbance of the regulation of p34cdc2/cyclin B1 complex, thus leading to G2/M phase arrest.  相似文献   

4.
The cdc25A phosphatase removes inhibitory phosphates from threonine-14 and tyrosine-15 of cyclin dependent kinase-2 (cdk2) in vitro, and it is therefore widely assumed that cdc25A positively regulates cyclin E- and A-associated cdk2 activity at the G1 to S phase transition of the mammalian cell division cycle. Human cdc25A was introduced into mouse NIH3T3 fibroblasts co-expressing a form of the colony-stimulating factor-1 (CSF-1) receptor that is partially defective in transducing mitogenic signals. Cdc25A enabled these cells to form colonies in semisolid medium containing serum plus human recombinant CSF-1 in a manner reminiscent of cells rescued by c-myc. However, cdc25A-rescued cells could not proliferate in chemically defined medium containing CSF-1 and continued to require c-myc function for S phase entry. When contact-inhibited cells overexpressing cdc25A were dispersed and stimulated to synchronously enter the cell division cycle, they entered S phase 2-3 h earlier than their parental untransfected counterparts. Shortening of G1 phase temporally correlated with more rapid degradation of the cdk inhibitor p27Kip1 and with premature activation of cyclin A-dependent cdk2. Paradoxically, tyrosine phosphorylation of cdk2 increased considerably as cells entered S phase, and cdc25A overexpression potentiated rather than diminished this effect. At face value, these results are inconsistent with the hypothesis that cdc25A acts directly on cdk2 to activate its S phase promoting function.  相似文献   

5.
A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating.  相似文献   

6.
7.
8.
Human cyclins A and B1 were assembled with the cdk2 or cdc2 protein to reconstitute their respective kinase activities in vitro. Both cyclins complemented either cdk2 or cdc2, yielding kinase activities that supported the phosphorylation of histone H1. Activation of cdk2-catalyzed H1 kinase activity by cyclin A required a 10-min preincubation of the two components, whereas cdc2 kinase supported phosphate incorporation without a detectable time lag upon the addition of cyclin B1, suggesting a slower association rate of cdk2 with cyclin A compared with cdc2 and cyclin B1. Both cdk2 and cyclin A, as well as cdc2 and cyclin B1, formed stable complexes in the absence of ATP and substrate that could be isolated after glycerol gradient centrifugation. Incubation of the isolated complexes with ATP and histone H1 supported the phosphorylation of the substrate. Cyclin A-activated cdk2 or cdc2 phosphorylated p107, a pRB-related cellular protein, 10 times more effectively than the cyclin B1-complexed kinases. This was most likely due to a direct association of cyclin A with p107 (Ewen, M. E., Faha, B., Harlow, E., and Livingston, D. (1992) Science 255, 85-87; Faha, B., Ewen, M. E., Tsai, L.-H., Livingston, D., and Harlow, E. (1992) Science 255, 87-90). The reconstituted cdc2-cyclin B1 complex incorporated 4-5-fold more phosphate into the p34 subunit of the three-subunit (p70, p34, and p14) human single-stranded DNA-binding protein (also called RP-A), a DNA replication and DNA repair factor, than cdc2-cyclin A. No detectable phosphorylation of the p34 protein was observed with cdk2 complexed with either cyclin B1 or A. These data indicate that both cyclins as well as the catalytic subunits are important factors in controlling the rate of phosphorylation of a given substrate. The cyclin-activated cdc2 family kinases may target their cellular substrates through cyclin-mediated protein-protein interactions.  相似文献   

9.
10.
In eucaryotes, M-phase promoting factor (MPF) triggers meiosis in germ cells and mitosis in somatic cells. MPF is composed of two proteins of which one is homologous with the protein kinase encoded by gene cdc2 of Schizosaccharomyces pombe (p34cdc2) and the other is a cyclin whose concentration oscillates during the cell cycle. Inactivation of p34cdc2 (MPF) requires cyclin degradation, which occurs during the metaphase-anaphase transition of the M-phase. Cyclin degradation is not only associated with cell cycle progression, but is also required for this event. At the G2/M transition, p34cdc2 protein kinase is activated and catalyzes phosphorylation of numerous key proteins, thus enabling cell changes to occur. p34cdc2 undergoes multiple-site phosphorylation in a cell cycle-dependent manner. At onset of mitosis, the protein phosphatase cdc25 catalyzes dephosphorylation of the p34cdc2 kinase at the threonine 14 and tyrosine 15 sites. This event may be the rate-limiting step controlling onset of mitosis in cells of vertebrates. A second protein kinase, encoded by the proto-oncogene c-mos, acts as a cytostatic factor preventing cyclin degradation and keeping unfertilized eggs from progressing beyond the second meiotic metaphase.  相似文献   

11.
The serine/threonine protein kinase p34cdc2 activity in V79 hamster cells 4 h after treatment with 7-Gy X-rays is similar to that of unirradiated cells. Nevertheless, the irradiated cells are arrested in the S and G2 phases of the cell cycle. The mRNA concentrations of histones H1 and H4 are reduced by a factor of about 2 in irradiated cells compared to unirradiated cells, as opposed to the mRNAs of high-mobility group I(Y) and 17 proteins which appear unchanged. Both the p34cdc2 activity and the mRNA concentrations of the histones rise within 30 min after the release of the radiation induced cell cycle block by caffeine. During this time span the p34cdc2 activity increases about 4-fold and the histone mRNA levels recover approximately to those of an exponentially growing cell population. Regulatory pathways influenced in irradiated and in subsequently caffeine treated cells apparently interact with basic cell cycle control mechanisms.  相似文献   

12.
13.
Protoplasts isolated from petunia leaf mesophyll are non-cycling cells mostly with 2C content. Cells regenerating from protoplast culture enter mitosis after 48 h. This experimental model is used to relate p34cdc2 kinase activity to cell cycle phase. Our results show that the histone H1 phosphorylation, and hence p34cdc2 kinase activity, peaks with G2+early M cell cycle phase. However, a trace kinase activity was already present when most cells were entering S phase. To obtain a maximum of cells in G1+S phases, the protoplast culture was treated with the rare amino acid, mimosine. Mimosine blocked plant cells derived from protoplast culture both at G1 and in early and mid S phase. Despite the increased G1+S level, p34cdc2 kinase activity did not increase. This suggests that the trace activity appearing when the majority of cells are entering S does not correspond to any putative p34cdc2 activation at G1/S transition but to the activation of the minor 4C population initially present in the leaf: the hypothesis remains that p34cdc2 kinase activity is solely related to G2+M phase in petunia.  相似文献   

14.
In Saccharomyces cerevisiae, entry into S phase requires the activation of the protein kinase Cdc28p through binding with cyclin Clb5p or Clb6p, as well as the destruction of the cyclin-dependent kinase inhibitor Sic1p. Mutants that are defective in this activation event arrest after START, with unreplicated DNA and multiple, elongated buds. These mutants include cells defective in CDC4, CDC34 or CDC53, as well as cells that have lost all CLB function. Here we describe mutations in another gene, CAK1, that lead to a similar arrest. Cells that are defective in CAK1 are inviable and arrest with a single nucleus and multiple, elongated buds. CAK1 encodes a protein kinase most closely related to the Cdc2p family of protein kinases. Mutations that lead to the production of an inactive kinase that can neither autophosphorylate, nor phosphorylate Cdc28p in vitro are also incapable of rescuing a cell with a deletion of CAK1. These results underscore the importance of the Cak1p protein kinase activity in cell cycle progression.  相似文献   

15.
A conditional heat-sensitive mutation in the cdc14 gene of the fission yeast Schizosaccharomyces pombe results in failure to form a septum. Cells become highly elongated and multinucleate as growth and nuclear division continue in the absence of cell division. This article describes the cloning of the cdc14 gene and the identification of its product, a protein of 240 amino acids, p28cdc14. A null allele of the cdc14 gene shows that the gene is essential for septum formation and completion of the cell-division cycle. Overexpression of the gene product, p28cdc14, causes cell-cycle arrest in late G2 before mitosis. Cells leaking past the block activate p34cdc2 kinase and show condensed chromosomes, but the normal rearrangements of the microtubules and microfilaments that are associated with the transition from interphase to mitosis do not occur. Overexpression of p28cdc14 in mutants, in which the timing of mitosis is altered, suggests that these effects may be mediated upstream of the mitotic inhibitor wee1. These data are consistent with the idea that p28cdc14 may play a role in both the initiation of mitosis and septum formation and, by doing so, be part of the mechanism that coordinates these two cell-cycle events.  相似文献   

16.
cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase.  相似文献   

17.
18.
Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells.  相似文献   

19.
Cyclin-dependent protein kinases (Cdks) are key regulatory proteins of the eukaryotic cell cycle. Cdc2 is expressed in late G1/S phase and functions in the G2 to M phase transition. Adenovirus E1A proteins are known to induce the expression of p34cdc2 and DNA synthesis in normal quiescent cells. In this study, mutational analysis of the human cdc2 promoter revealed that transactivation of the promoter by the E1A proteins in cycling cells is mediated through the two CCAAT box binding motifs. A 110-kDa protein (CBF/cdc2) was identified in nuclear extracts from monkey kidney (CV-1) cells stably expressing E1A as well as from adenovirus-transformed human 293 cells. Further, we show that this EIA-inducible CBF/cdc2 is related to the CBF which was shown to activate the heat shock protein 70 promoter. Analyses of the functional domain(s) of E1A required for the induction of the CBF and transactivation of the cdc2 promoter in these conditions revealed that E1A mutants which were defective in binding the pRB family of proteins or the cellular p300 protein were still active in assays measuring the induction of the CBF and transactivation of the cdc2 promoter, albeit with reduced efficiencies. But the E1A mutant which lost both functional domains was inactive in these assays. These results suggest that E1A has redundant functional domains for the induction of the 110-kDa CBF and activation of human cdc2 gene expression.  相似文献   

20.
The essential CDC14 gene of the budding yeast, Saccharomyces cerevisiae, encodes a 62-kDa protein containing a sequence that conforms to the active site motif found in all enzymes of the protein tyrosine phosphatase superfamily. Genetic studies suggest that Cdc14p may be involved in the initiation of DNA replication, but its precise cell cycle function is unknown. Recombinant Cdc14p was produced in bacteria, characterized, and shown to be a dual specificity protein phosphatase. Polyanions such as polyglutamate and double-stranded and single-stranded DNA bind to Cdc14p and affect its activity. Native molecular weights of 131,000 and 169,000 determined by two independent methods indicate that recombinant Cdc14p self-associates in vitro to form active oligomers. The catalytically inactive Cdc14p C283S/R289A mutant is not able to suppress the temperature sensitivity of a cdc14-1(ts) mutant nor replace the wild type gene in vivo, demonstrating that phosphatase activity is required for the cell cycle function of Cdc14p. A distinctive COOH-terminal segment (residues 375-551) is rich in Asn and Ser residues, carries a net positive charge, and contains two tandem 21-residue repeats. This COOH-terminal segment is not required for activity, for oligomerization, or for the critical cell cycle function of Cdc14p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号