首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recognize that established techniques permit two-dimensional interpolation to be accomplished efficiently as well as accurately when the grid of points, on which the data is available, is regular. Existing methods suitable for irregular grids are computationally protracted. We show that by using Lagrange polynomials of a complex variable we can interpolate, almost as conveniently as in one dimension, from an irregular grid onto particular points lying on parallel lines. Standard one-dimensional interpolation schemes can then be used to complete the two-dimensional interpolation. We discuss how, in any particular instance, the order of the Lagrange polynomials is chosen, and we present the results of a computational test of our method.  相似文献   

2.
 The main contribution of this paper is the study of interpolation functions in control volume finite element method used in equal order and applied to an incompressible two-dimensional fluid flow. Especially, the exponential interpolation function expressed in the elemental local coordinate system is compared to the classic linear interpolation function expressed in the global coordinate system. A quantitative comparison is achieved by the application of these two schemes to four flows that we know the analytical solutions. These flows are classified in two groups: flows with privileged direction and flows without. The two interpolation functions are applied to a triangular element of the domain then; a direct comparison of the results given by each interpolation function to the exact value is easily realized. The two functions are also compared when used to solve the discretized equations over the entire domain. Stability of the numerical process and accuracy of solutions are compared. Received: 20 October 2002 / Accepted: 2 December 2002  相似文献   

3.
In this paper, boundary element analysis for two-dimensional potential problems is investigated. In this study, the boundary element method (BEM) is reconsidered by proposing new shape functions to approximate the potentials and fluxes. These new shape functions, called complex Fourier shape function, are derived from complex Fourier radial basis function (RBF) in the form of exp(iωr). The proposed shape functions may easily satisfy various functions such as trigonometric, exponential, and polynomial functions. In order to illustrate the validity and accuracy of the present study, several numerical examples are examined and compared to the results of analytical and with those obtained by classic real Lagrange shape functions. Compared to the classic real Lagrange shape functions, the proposed complex Fourier shape functions show much more accurate results.  相似文献   

4.
Recent studies show that the unsymmetric finite element method exhibits excellent performance when the discretized meshes are severely distorted. In this article, a new unsymmetric 4-noded quadrilateral plane element is presented using both incompatible test functions and trial functions. Five internal nodes, one at the elemental central and four at the middle sides, are added to ensure the quadratic completeness of the elemental displacement field. Thereafter, the total nine nodes are applied to form the shape functions of trial function, and the Lagrange interpolation functions are adopted as the incompatible test shape functions of the internal nodes. The incompatible test displacements are then revised to satisfy the patch test. Numerical tests show that the present element can provide very good numerical accuracy with badly distorted meshes. Unlike the existing unsymmetric four-node plane elements in which the analytical stress fields are employed, the present element can be extended to boundary value problems of any differential equations with no difficulties.  相似文献   

5.
 A mesh free method called point interpolation method (PIM) is presented for static and mode-frequency analysis of two-dimensional piezoelectric structures. In the present method, the problem domain and its boundaries are represented by a set of properly scattered nodes. The displacements and the electric potential of a point are interpolated by the values of nodes in its local support domain using shape functions derived based on a point interpolation scheme. Techniques are discussed to surmount the singularity of the moment matrix. Variational principle together with linear constitutive piezoelectric equations is used to establish a set of system equations for arbitrary-shaped piezoelectric structures. These equations are assembled for all quadrature points and solved for displacements and electric potentials. A polynomial PIM program has been developed in MATLAB with matrix triangularization algorithm (MTA), which automatically performs a proper node enclosure and a proper basis selection. Examples are also presented to demonstrate the accuracy and stability of the present method and their results are compared with the conventional FEM results from ABAQUS as well as the analytical or experimental ones. Received: 6 February 2002 / Accepted: 5 August 2002  相似文献   

6.
In this paper, finite element method is reformulated using new shape functions to approximate the state variables (ie, displacement field and its derivatives) and inhomogeneous term (ie, inertia term) of Navier's differential equation. These shape functions and corresponding elements are called spherical Hankel hereafter. It is possible for these elements to satisfy the polynomial and the first and second kind of Bessel function fields simultaneously, while the classic Lagrange elements can only satisfy polynomial ones. These shape functions are so robust that with least degrees of freedom, much better results can be achieved in comparison with classic Lagrange ones. It is interesting that no Runge phenomenon exists in the interpolation of proposed shape functions when going to higher degrees of freedom, while it may occur in classic Lagrange ones. Moreover, the spherical Hankel shape functions have a significant robustness in the approximation of folded surfaces. Five numerical examples related to the usage of suggested shape functions in finite element method in solving problems are studied, and their results are compared with those obtained from classic Lagrange shape functions and analytical solutions (if available) to show the efficiency and accuracy of the present method.  相似文献   

7.
陶天友  王浩 《工程力学》2017,34(3):182-188
针对传统Deodatis谐波合成法的模拟效率受Cholesky分解次数制约的问题,通过对互谱密度矩阵分解引入Hermite插值,推导了基于Hermite插值的简化风场模拟方法,将传统谐波合成法中的Cholesky分解次数由n×N次缩减为n×2k次(2k < N),从而大幅度提升了传统谐波合成法的计算效率。以某大跨度三塔悬索桥主梁风场模拟为例,分别基于传统Deodatis法、三次Lagrange插值法、Hermite插值法模拟了时长为4096 s的脉动风速时程,三者在模拟耗时与模拟精度方面的对比表明:Hermite插值法与Lagrange插值法均能显著提高传统谐波合成法的模拟效率;Hermite插值法的模拟效率略低于三次Lagrange插值法,但其对H矩阵的模拟精度明显高出一个层次,因而Hermite插值法在风场模拟中表现更优。采用基于Hermite插值的简化方法,模拟脉动风速的功率谱与相关函数均能与目标值吻合较好,表明所模拟的脉动风速仍具有较高的保真度。在此基础上,通过插值间距的优化分析给出了插值间距的建议取值区间。  相似文献   

8.
在卧式罐容量计量容量比较法原理的基础上,讨论了由有限的卧式罐离散(V-H)点计算出全高度量程范围内任意点的容积值的4种计算方法。并以30m3卧式罐为对象进行了试验研究。试验结果表明:Lagrange插值方法、分段线性插值方法、三次多项式拟合方法和三次样条插值方法在中间液位区间的计算结果较为一致;三次样条插值方法计算结果与试验值偏差最小,最大偏差值23.0L,而且稳定性较好;Lagrange插值方法、分段线性插值方法和三次多项式拟合方法在低液位高度或高液位高度的偏差比中间液位区间的计算偏差大;但是在低液位高度和高液位高度区间,由于多节点时边沿振荡原因,Lagrange插值方法的计算偏差大于三次样条插值方法。  相似文献   

9.
The paper presents a spatial Timoshenko beam element with a total Lagrangian formulation. The element is based on curvature interpolation that is independent of the rigid‐body motion of the beam element and simplifies the formulation. The section response is derived from plane section kinematics. A two‐node beam element with constant curvature is relatively simple to formulate and exhibits excellent numerical convergence. The formulation is extended to N‐node elements with polynomial curvature interpolation. Models with moderate discretization yield results of sufficient accuracy with a small number of iterations at each load step. Generalized second‐order stress resultants are identified and the section response takes into account non‐linear material behaviour. Green–Lagrange strains are expressed in terms of section curvature and shear distortion, whose first and second variations are functions of node displacements and rotations. A symmetric tangent stiffness matrix is derived by consistent linearization and an iterative acceleration method is used to improve numerical convergence for hyperelastic materials. The comparison of analytical results with numerical simulations in the literature demonstrates the consistency, accuracy and superior numerical performance of the proposed element. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A differential reproducing kernel (DRK) interpolation-based collocation method is developed for solving partial differential equations governing a certain physical problem. The novelty of this method is that we construct a set of differential reproducing conditions to determine the shape functions of derivatives of the DRK interpolation function, without directly differentiating the DRK interpolation function. In addition, the shape function of the DRK interpolation function at each sampling node is separated into a primitive function processing Kronecker delta properties and an enrichment function constituting reproducing conditions, so that the nodal interpolation properties are satisfied. A point collocation method based on the present DRK interpolation is developed for the analysis of one-dimensional bar problems, two-dimensional potential problems, and plane problems of elastic solids. It is shown that the present DRK interpolation-based collocation method is indeed a truly meshless approach, with excellent accuracy and fast convergence rate.  相似文献   

11.
This work presents a time-truncation scheme, based on the Lagrange interpolation polynomial, for the solution of two-dimensional elastodynamics by the time-domain boundary element method. The reduction in the number of assembled matrices, maintaining a compromise between accuracy and computational economy and efficiency, is the main purpose of the present work. In order to verify the accuracy of the proposed formulation, two examples are presented and discussed.  相似文献   

12.
Abstract

The exact geometry four-node solid-shell element formulation using the sampling surfaces (SaS) method is developed. The SaS formulation is based on choosing inside the shell N not equally spaced SaS parallel to the middle surface in order to introduce the displacements of these surfaces as basic shell unknowns. Such choice of unknowns with the use of Lagrange basis polynomials of degree N???1 in the through-thickness interpolations of displacements, strains, stresses and material properties leads to a very compact form of the SaS shell formulation. The SaS are located at Chebyshev polynomial nodes that make possible to minimize uniformly the error due to Lagrange interpolation. To implement efficient 3D analytical integration, the extended assumed natural strain method is employed. As a result, the proposed hybrid-mixed solid-shell element exhibits a superior performance in the case of coarse meshes. To circumvent shear and membrane locking, the assumed stress and strain approximations are utilized in the framework of the mixed Hu-Washizu variational formulation. It can be recommended for the 3D stress analysis of thick and thin doubly-curved functionally graded shells because the SaS formulation with only Chebyshev polynomial nodes allows the obtaining of numerical solutions, which asymptotically approach the 3D solutions of elasticity as the number of SaS tends to infinity.  相似文献   

13.
A novel method for simulating field propagation is presented. The method, based on the angular spectrum of plane waves and coordinate rotation in the Fourier domain, removes geometric limitations posed by conventional propagation calculation and enables us to calculate complex amplitudes of diffracted waves on a plane not parallel to the aperture. This method can be implemented by using the fast Fourier transformation twice and a spectrum interpolation. It features computation time that is comparable with that of standard calculation methods for diffraction or propagation between parallel planes. To demonstrate the method, numerical results as well as a general formulation are reported for a single-axis rotation.  相似文献   

14.
The paper presents an overview of the analytical methods as well as finite element method employed by the author in a few earlier investigations pertaining to modelling and simulation of deformation at microscopic scale. The following case-studies are considered for illustrations: deformation of a set of powder particles during hot isostatic pressing; effective properties of a typical particulate metal matrix composite and porous material; constitutive behaviour of a material exhibiting transformation-induced plasticity; shear band formation in polycrystalline material. The paper describes certain generalized techniques for constructing the microstructural geometries, assigning material properties and imposing boundary conditions. The concept of generating two-phase geometries using a master mesh and the generalized plane strain approach to handle two-dimensional approximations used in the above studies are also reviewed. In contrast to the commonly employed unit cell models based on certain regular geometries, the present method uses the actually observed microstructural geometries. This method accommodates more realistic and complex conditions compared to those supported by the well-explored analytical methods. Although, only homogeneous and isotropic systems have been discussed in this paper, this method can be easily extended to inhomogeneous and anisotropic cases as well. In general, the technique is emerging as a suitable numerical tool for designing materials for specific applications.  相似文献   

15.
In this paper, new spherical Hankel shape functions are used to reformulate boundary element method for 2‐dimensional elastostatic and elastodynamic problems. To this end, the dual reciprocity boundary element method is reconsidered by using new spherical Hankel shape functions to approximate the state variables (displacements and tractions) of Navier's differential equation. Using enrichment of a class of radial basis functions (RBFs), called spherical Hankel RBFs hereafter, the interpolation functions of a Hankel boundary element framework has been derived. For this purpose, polynomial terms are added to the functional expansion that only uses spherical Hankel RBF in the approximation. In addition to polynomial function fields, the participation of spherical Bessel function fields has also increased robustness and efficiency in the interpolation. It is very interesting that there is no Runge phenomenon in equispaced Hankel macroelements, unlike equispaced classic Lagrange ones. Several numerical examples are provided to demonstrate the effectiveness, robustness and accuracy of the proposed Hankel shape functions and in comparison with the classic Lagrange ones, they show much more accurate and stable results.  相似文献   

16.
A hermite interpolation based formulation is presented for the boundary element analysis of two-dimensional potential problems. Two three-noded Hermitian Cubic Elements (HCE) are introduced for the modelling of corners or points with non-unique tangents on the boundary. These elements, along with the usual two-noded HCE, are used in numerical examples. The results obtained show that faster convergence can be achieved using HCE compared with using Lagrange interpolation type Quadratic Elements (QE), for about the same amount of computing resources.  相似文献   

17.
将无网格点插值法、径向基点插值法、光滑节点插值法用于中心刚体-旋转柔性梁的动力学分析。基于浮动坐标系方法,考虑梁的纵向拉伸变形和横向弯曲变形,并计入横向弯曲变形引起的纵向缩短,即非线性耦合项,运用第二类Lagrange方程推导得到作大范围运动的中心刚体-旋转柔性梁系统的动力学方程。将无网格法的仿真结果与有限元法和假设模态法进行比较分析,表明其作为一种柔性体离散方法在中心刚体-旋转柔性梁的刚柔耦合多体系统动力学的研究中具有可推广性。  相似文献   

18.
 A meshless method is developed for the stress analysis of two-dimensional solids, based on a local weighted residual method with the Heaviside step function as the weighting function over a local subdomain. Trial functions are constructed using radial basis functions (RBF). The present method is a truly meshless method based only on a number of randomly located nodes. No domain integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Effects of the sizes of local subdomain and interpolation domain on the performance of the present method are investigated. The behaviour of shape parameters of multiquadrics (MQ) has been systematically studied. Example problems in elastostatics are presented and compared with closed-form solutions and show that the proposed method is highly accurate and possesses no numerical difficulties. Received: 10 November 2002 / Accepted: 5 March 2003  相似文献   

19.
This paper presents the finite rotation exact geometry four-node solid-shell element using the sampling surfaces (SaS) method. The SaS formulation is based on choosing inside the shell N SaS parallel to the middle surface to introduce the displacements of these surfaces as basic shell unknowns. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the through-thickness distributions of displacements, strains and stresses leads to a robust higher-order shell formulation. The SaS are located at only Chebyshev polynomial nodes that make possible to minimize uniformly the error due to Lagrange interpolation. The proposed hybrid-mixed four-node solid-shell element is based on the Hu-Washizu variational principle and is completely free of shear and membrane locking. The tangent stiffness matrix is evaluated through efficient 3D analytical integration and its explicit form is given. As a result, the proposed exact geometry solid-shell element exhibits a superior performance in the case of coarse meshes and allows the use of load increments, which are much larger than possible with existing displacement-based solid-shell elements.  相似文献   

20.
Summary As is well-known, an efficient numerical technique for the solution of Cauchy-type singular integral equations along an open interval consists in approximating the integrals by using appropriate numerical integration rules and appropriately selected collocation points. Without any alterations in this technique, it is proposed that the estimation of the unknown function of the integral equation is further achieved by using the Hermite interpolation formula instead of the Lagrange interpolation formula. Alternatively, the unknown function can be estimated from the error term of the numerical integration rule used for Cauchy-type integrals. Both these techniques permit a significant increase in the accuracy of the numerical results obtained with an insignificant increase in the additional computations required and no change in the system of linear equations solved. Finally, the Gauss-Chebyshev method is considered in its original and modified form and applied to two crack problems in plane isotropic elasticity. The numerical results obtained illustrate the powerfulness of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号