首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uman I  Sade S  Gopal V  Harrington JA  Katzir A 《Applied optics》2004,43(10):2039-2045
An all-fiber-optic infrared multispectral radiometer for measurements of temperature and emissivity of graybodies at near-room temperature was constructed. Different spectral regions in the radiometer were obtained by use of hollow glass waveguides (HGWs) as filters. Using HGWs instead of bulk filters was advantageous because each HGW can be used as two different spectral filters when a dual-band IR detector is used. In addition, HGWs are much cheaper than the bulk IR filters that are usually used in such applications. For one graybody with a mean emissivity of 0.71, the estimated mean errors obtained for sample temperature, ambient temperature, and sample emissivity for all measured temperatures were 0.50% (approximately 1.65 K), 0.48% (approximately 1.4 K), and 7.3% (approximately 0.052) respectively. For a second graybody with a mean emissivity of 0.8 the estimated mean errors were 0.35% (approximately 1.2 K), 0.48% (approximately 1.4 K), and 5.0% (approximately 0.04), respectively.  相似文献   

2.
利用自动分光辐射测量仪系统测试了3种典型碳素纤维预制体样品的法向光谱发射率和法向总发射率,研究了排布特征对碳素纤维红外发射率性能的影响。结果表明,股线型和短切毡型碳素纤维预制体的法向光谱发射率在整个测试波段内均大于编织布状样品,股线型和短切毡型碳素纤维预制体的法向总发射率分别为0.910和0.888,均高于编织布样品。根据SEM微观形貌测试及物体表面的电磁理论分析,松散的纤维排布结构有利于碳素纤维预制体红外发射率的提高。  相似文献   

3.
利用自动分光辐射测量仪系统测试了两种碳素纤维在石墨化处理前后的法向光谱发射率和法向总发射率,研究了石墨化处理对碳素纤维红外发射率性能的影响.研究表明:随着石墨化过程中非碳元素的大量脱除和石墨微晶规整程度的提高,T300石墨化碳素纤维和国产石墨碳素纤维毡在2500~5000 nm和5000~6500 nm波段内的光谱发射...  相似文献   

4.
Sobrino JA  Cuenca J 《Applied optics》1999,38(18):3931-3936
Multiangle algorithms for estimating sea and land surface temperature with Along-Track Scanning Radiometer data require a precise knowledge of the angular variation of surface emissivity in the thermal infrared. Currently, few measurements of this variation exist. Here an experimental investigation of the angular variation of the infrared emissivity in the thermal infrared (8-14-mum) band of some representative samples was made at angles of 0 degrees -65 degrees (at 5 degrees increments) to the surface normal. The results show a decrease of the emissivity with increasing viewing angle, with water showing the highest angular dependence (~7% from 0 degrees to 65 degrees views). Clay, sand, slime, and gravel show variations of approximately 1-3% for the same range of views, whereas a homogeneous grass cover does not show angular dependence. Finally, we include an evaluation of the impact that these data can produce on the algorithms for determining land and sea surface temperature from double-angle views.  相似文献   

5.
为优化碳素纤维电热体红外辐射性能,测定了碳素纤维毡表面除杂处理前后的法向光谱发射率和法向总发射率,利用X射线衍射和拉曼光谱进行样品的物相结构分析,研究了表面除杂处理过程物相结构变化与碳素纤维毡法向光谱发射率和总发射率的关系.结果表明:采用硝酸液相除杂和空气瞬时高温2种方式处理时,碳素纤维毡的法向光谱发射率均出现一定的波...  相似文献   

6.
Accurate knowledge of surface emissivity is essential for applications in remote sensing (remote temperature measurement), radiative transport, and modeling of environmental energy balances. Direct measurements of surface emissivity are difficult when there is considerable background radiation at the same wavelength as the emitted radiation. This occurs, for example, when objects at temperatures near room temperature are measured in a terrestrial environment by use ofthe infrared 8-14-microm band.This problem is usually treated by assumption of a perfectly diffuse surface or of diffuse background radiation. However, real surfaces and actual background radiation are not diffuse; therefore there will be a systematic measurement error. It is demonstrated that, in some cases, the deviations from a diffuse behavior lead to large errors in the measured emissivity. Past measurements made with simplifying assumptions should therefore be reevaluated and corrected. Recommendations are presented for improving experimental procedures in emissivity measurement.  相似文献   

7.
Spectral statistical-analysis techniques were developed and applied to high-spectral-resolution infrared measurements of the sea surface. The effective incidence angle of a ship-borne instrument in typical at-sea conditions was found to introduce errors of up to 0.7 K in sea-surface temperature retrievals at a 55 degrees view angle. The sea-surface emissivity was determined over the 8-12-microm window at view angles of 40 degrees and 55 degrees and at wind speeds up to 13 ms(-1). The emissivity was found to increase in magnitude with increasing wind speed, rather than decrease, as predicted by widely used parameterizations. Use of these parameterizations can cause significant bias in remote sensing of sea-surface temperature in noncalm conditions.  相似文献   

8.
A hand-held, battery-powered Fourier transform infrared spectroradiometer weighing 12.5 kg has been developed for the field measurement of spectral radiance from the Earth's surface and atmosphere in the 3-5-μm and 8-14-μm atmospheric windows, with a 6-cm(-1) spectral resolution. Other versions of this instrument measure spectral radiance between 0.4 and 20 μm, using different optical materials and detectors, with maximum spectral resolutions of 1 cm(-1). The instrument tested here has a measured noise-equivalent delta T of 0.01 °C, and it measures surface emissivities, in the field, with an accuracy of 0.02 or better in the 8-14-μm window (depending on atmospheric conditions), and within 0.04 in accessible regions of the 3-5-μm window. The unique, patented design of the interferometer has permitted operation in weather ranging from 0 to 45 °C and 0 to 100% relative humidity, and in vibration-intensive environments such as moving helicopters. The instrument has made field measurements of radiance and emissivity for 3 yr without loss of optical alignment. We describe the design of the instrument and discuss methods used to calibrate spectral radiance and calculate spectral emissivity from radiance measurements. Examples of emissivity spectra are shown for both the 3-5-μm and 8-14-μm atmospheric windows.  相似文献   

9.
Bourlier C 《Applied optics》2005,44(20):4335-4349
The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.  相似文献   

10.
Surface emissivities play an important role in thermal remote sensing, since knowledge of them is required to estimate land surface temperature with enough accuracy. They are also important in other environmental or geological studies. We show the results obtained for the emissivity spectra of different natural surfaces (water, green, and senescent vegetation) by applying the temperature and emissivity separation (TES) algorithm to ground-based measurements collected at the field with a multiband thermal radiometer. The results have been tested with data included in spectral libraries, and rms errors lower than 0.01 have been found, except for senescent vegetation. Two methods are also proposed to apply the TES algorithm to measurements achieved in the laboratory: (i) by heating the sample and (ii) using a box with reflective walls.  相似文献   

11.
Cuenca J  Sobrino JA 《Applied optics》2004,43(23):4598-4602
One condition for precise multiangle algorithms for estimating sea and land surface temperature with the data from the Advanced Along Track Scanning Radiometer is accurate knowledge of the angular variation of surface emissivity in the thermal IR spectrum region. Today there are very few measurements of this variation. The present study is conducted to provide angular emissivity measurements for five representative samples (water, clay, sand, loam, gravel). The measurements are made in one thermal IR broadband (8-13 microm) and three narrower bands (8.2-9.2, 10.3-11.3, and 11.5-12.5 microm) at angles of 0 degrees-60 degrees (at 5 degrees increments) to the surface normal. The results show a general decrease in emissivity with increasing viewing angles, with the 8.2-9.2-microm channel the most sensitive to this dependence and sand the sample showing the greatest variation.  相似文献   

12.
Li H  Pinel N  Bourlier C 《Applied optics》2011,50(23):4611-4621
Surface reflection is an important phenomenon that must be taken into account when studying sea surface infrared emissivity, especially at large observation angles. This paper models analytically the polarized infrared emissivity of one-dimensional sea surfaces with shadowing effect and one surface reflection, by assuming a Gaussian surface slope distribution. A Monte Carlo ray-tracing method is employed as a reference. It is shown that the present model agrees well with the reference method. The emissivity calculated by the present model is then compared with measurements. The comparisons show that agreements are greatly improved by taking one surface reflection into account. The Monte Carlo ray-tracing results of sea surface infrared emissivity with two and three reflections are also determined. Their contributions are shown to be negligible.  相似文献   

13.
Konishi T  Ito A  Saito K 《Applied optics》2000,39(24):4278-4283
An infrared thermograph technique with an 8-12-mum spectral range was used to measure transient two-dimensional profiles of liquid (1-propanol) surface temperatures. An IR camera was placed over the liquid, allowing us to observe the fuel surface through propanol vapor. To use this technique, one must know the emissivity of the liquid surface and the IR absorption of both the liquid propanol and the propanol vapor. The emissivity of the liquid propanol was determined with a fine thermocouple temperature measurement, IR absorption with the propanol vapor was calibrated with a blackbody source, and IR absorption with a liquid propanol was theoretically estimated. The accuracy of our infrared thermograph technique proved to be better than 97% in detecting the liquid-surface temperature with a temperature sensitivity of 0.1 degrees C and a time response of 30 ms.  相似文献   

14.
An analytical approach of the two-dimensional emissivity of a rough sea surface in the infrared band is presented. The emissivity characterizes the intrinsic radiation of the sea surface. Because the temperature measured by the infrared camera depends on the emissivity, the emissivity is a relevant parameter for retrieving the sea-surface temperature from remotely sensed radiometric measurements, such as from satellites. This theory is developed from the first-order geometrical-optics approximation and is based on recent research. The typical approach assumes that the slope in the upwind direction is greater than the slope in the crosswind direction, involving the use of a one-dimensional shadowing function with the observed surface assumed to be infinite. We introduce the two-dimensional shadowing function and the surface observation length parameters that are included in the modeling of the two-dimensional emissivity.  相似文献   

15.
Pulse-heating experiments were performed on niobium strips, taking the specimens from room temperature to the melting point is less than one second. The normal spectral emissivity of the strips was measured by integrating sphere reflectometry, and, simultaneously, experimental data (radiance temperature, current, voltage drop) for thermophysical properties were collected with sub-millisecond time resolution. The normal spectral emissivity results were used to compute the true temperature of the niobium strips; the heat capacity, electrical resistivity, and hemispherical total emissivity were evaluated in the temperature range 1100 to 2700 K. The results are compared with literature data obtained in pulse-heating experiments. It is concluded that combined measurements of normal spectral emissivity and of thermophysical properties on strip specimens provide results of the same quality as obtained using tubular specimens with a blackbody. The thermophysical property results on niobium also validate the normal spectral emissivity measurements by integrating sphere reflectometry.  相似文献   

16.
A technique for measuring the temperature and spectral emissivity of condensed substances is described. With this technique, measurements can be made in any spectral range, rather than only at short wavelengths, where the Wien approximation for the Planck formula holds. In particular, in the spectral range around the peak-emission wavelength, the highest signal-to-noise ratio can typically be attained, which raises the accuracy in temperature and emissivity determination. The proposed approach to processing the experimental emissivity curves offers the possibility of analyzing the effects of the major factors (signal-to-noise ratio, spectral range of measurements, type of the model function representing the spectral emissivity, and others) on the accuracy in temperature measurements. The potentialities of the technique are demonstrated by measuring the temperatures and emissivities of W, Re, and Ta strip lamps in the spectral range 0.9 to 2.1 Μm.  相似文献   

17.
马宇轩  冯国进 《计量学报》2022,43(9):1161-1165
为了能够实现常温状态下的黑体光谱发射率的准确测量,基于连续可调激光器,搭建了一套中红外波段黑体光谱发射率测量装置。采用自行设计10 mA恒流源对MCT探测器进行驱动,测量结果的动态范围从7.29×104提高到4.32×105,有效提升了探测系统的动态范围。该装置实现了覆盖光谱范围7.5~10.6μm,发射率测量量值范围0.01~0.999 9的高精度测量,最优不确定度为4.0×10-5(k=2)。  相似文献   

18.
Spectral and total emissivity measurements of highly emitting materials   总被引:1,自引:0,他引:1  
Carbon, carbides, and nitrides are materials having a relatively high emissivity over the entire spectral range. They are important both as a material and as material components of composites for high-temperature applications, e.g.. in space technology (reusable space transport systems) or energy systems (hot gas turbines). The normal total and spectral emissivities of these three materials have been investigated in the temperature range 1000 to 2000 K and at wavelengths between 0.6 and 6.8 m. The results have been used to interpret emissivity results of fiber-matrix composites. They are also discussed with regard to potential application as reference materials for high-temperature emissivity measurements.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

19.
Ge/ZnS one-dimensional heterostructure photonic crystal (1DHPC) was successfully prepared by alternating thin films of Ge and ZnS on the quartz substrate by using the optical coating technology. The microstructure and spectral emissivity of as-prepared 1DHPC were characterized by using scanning electron microscopy (SEM) and fourier transform infrared spectrometer (FTIR), respectively. The test result of spectral emissivity shows that the average emissivities of as-prepared Ge/ZnS 1DHPC in the atmospheric windows of 3–5 μm and 8–14 μm can be as low as 0.046 and 0.190, respectively, but the average emissivity in the non-atmospheric window of 5–8 μm can be as high as 0.579. The results indicate that the as-prepared Ge/ZnS 1DHPC has obviously infrared spectrally selective low emissivity characteristic, basically meets the requirements of our design. The as-prepared 1DHPC with infrared spectrally selective low emissivity is promising for use as a material to unify the infrared stealth and effective cooling of the aircraft.  相似文献   

20.
Both integrating sphere reflectometry (ISR) as well as laser polarimetry have their advantages and limitations in their ability to determine the normal spectral emissivity of metallic samples. Laser polarimetry has been used for years to obtain normal spectral emissivity measurements on pulse-heated materials. The method is based on the Fresnel equations, which describe reflection and refraction at an ideally smooth interface between two isotropic media. However, polarimetry is frequently used with surfaces that clearly deviate from this ideal condition. Questions arise with respect to the applicability of the simple Fresnel equations to non-specular surfaces. On the other hand, reflectometry utilizing integrating spheres provides a measurement of the hemispherical spectral reflectance, from which the normal spectral emissivity can be derived. ISR provides data on spectral-normal-hemispherical reflectance and, hence, normal spectral emissivity for a variety of surfaces. However, the resulting errors are minimal when both the sample and the reference have a similar bidirectional reflectance distribution function (BRDF). In an effort to explore the limits of polarimetry in terms of surface roughness, room temperature measurements on the same samples with various degrees of roughness were performed using both ISR and a laser polarimeter. In this paper the two methods are briefly described and the results of the comparison are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号