首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Considering the electronic parameters and chemical characteristics, a synergistic catalytic effect of Fe2O3 along with TiO2 could be achieved for electrochemical reactions if both the oxides are produced in a mixed oxide form. The present study explored the mixed oxide composite viz; Fe2O3–TiO2, synthesized via thermal decomposition method, to increase the catalytic efficiency of Ni–P electrodes, the well known catalytic electrodes for hydrogen evolution reaction in alkaline medium. The incorporation of the Fe2O3–TiO2 mixed oxide into Ni–P matrix substantially reduced overpotential during hydrogen evolution reaction (HER) in 32% NaOH solution. A significant improvement on the electrochemical activity of the Ni–P coated electrodes was achieved as evidenced from the results of Tafel and impedance studies. The incorporation of Fe2O3–TiO2 mixed oxide composite into the Ni–P matrix has improved both metallurgical and electrochemical characteristics and hence its amount of incorporation should be optimum. The electrodes exhibited high stability under dynamic experimental conditions. The role of the composite and the possible mechanism are discussed in this paper.  相似文献   

2.
Controlled integration of metal-based sulfides with phosphides possessing strong coupling effects is a promising way to accelerate electron transfer by modulating the electronic structures of the host species. In this work, a c-doped Ni3S4/Ni2P (C@Ni3S4/Ni2P) hybrid co-catalyst produced by in situ sulfuration and phosphidation of Ni-MOF was decorated on g-C3N4 and subsequently used for photocatalytic H2 evolution under visible-light irradiation. Among the prepared composites tested herein, the optimized g-C3N4/C@Ni3S4/Ni2P-30 composite showed the highest H2 evolution rate (14.49 mmol g−1 h−1) with 1.0 mmol L−1 of Eosin Y (EY)-sensitization, which is 10 times higher than that of pristine g-C3N4 (1.33 mmol g−1 h−1). The enhanced photocatalytic activity of this composite can be attributed to: (i) electronic interactions between Ni2P and Ni3S4 (which synergistically increased the electron transfer rate) and (ii) staggered band alignment of excited-stated EY, g-C3N4, Ni3S4, and Ni2P. This work may provide some perspectives for utilization of MOF-derived hybrid co-catalysts as substitutes of noble metals for effective photocatalytic H2 evolution.  相似文献   

3.
The electrocatalytic oxidation of methanol was studied on Ni–P and Ni–Cu–P supported over commercial carbon electrodes in 0.1 M KOH solution. Cyclic voltammetry and chronoamperometry techniques were employed. Electroless deposition technique was adopted for the preparation of these catalysts. The effect of the electroless deposition parameters on the catalytic activity of the formed samples was examined. They involve the variation of the deposition time, pH and temperature. The scanning electron micrography showed a compact Ni–P surface with a smooth and low porous structure. A decreased amount of nickel and phosphorus was detected by EDX analysis in the formed catalyst after adding copper to the deposition solution. However, an improvement in the catalytic performance of Ni–Cu–P/C samples was noticed. This is attributed to the presence of copper hydroxide/nickel oxyhydroxide species. It suppresses the formation of γ-NiOOH phase and stabilizes β-NiOOH form. Linear dependence of the oxidation current density on the square root of the scan rate reveals the diffusion controlled behaviour.  相似文献   

4.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

5.
The decomposition of NH3 for hydrogen production was studied using Ni/La2O3 catalysts at varying compositions and temperatures prepared via surfactant-templated synthesis to elucidate the influence of catalyst active metal content, support composition and calcination temperature on the catalytic activity. The catalytic performance of all samples was studied between 300 and 600 °C under atmospheric pressure. The catalytic activity of the sample were as follows: 10Ni/La2O3-450 > 10Ni/La2O3-550 > 10Ni/La2O3-650 ≈ 10Ni/La2O3-750 ≈ 10Ni/La2O3-850. The excellent activity (100%) of 10Ni/La2O3-450 could be due to the high surface area, basicity strength and concentration of surface oxygen species of the catalyst as evidenced by BET, CO2-TPD and XPS. In addition, to adjust the activity of the catalyst support, the molar ratios of Mg and La were varied (1:1, 3:1, 5:1, 7:1 and 9:1). The 5Ni/5MgLa (5:1 M ratio) was found to be the most active (100%) relative to other Ni/MgLa formulations. Furthermore, the Ni content in the Ni/5MgLa sample was adjusted between 10 and 40 wt%. Increasing the Ni content of the catalysts increased NH3 conversion with the 40 wt% Ni formulation demonstrating complete NH3 conversion at 600 °C and a high gas hourly space velocities (GHSV) (30,000 mL∙h−1∙gcat−1).  相似文献   

6.
Hydrogen production by supercritical water gasification (SCWG) is a promising technology for wet biomass utilization. Ni catalyst can realize the high gasification efficiency of biomass near the critical temperature of water. In this paper, Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts were prepared by an impregnation method. The catalyst performance for glucose gasification in supercritical water was tested in autoclave reactor. All experiments were carried out in the autoclave at 673 K, 24.5 MPa, and the concentration of glucose was 9.09 wt.%. The catalysts before and after reaction were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET specific surface area measurements, X-ray fluorescence spectrum (XRF) and Thermo-gravimetric analyses (TGA) in order to investigate on the chemical property and catalytic mechanism. The experimental results showed that hydrogen yield and hydrogen selectivity increased sharply with addition of Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. The catalytic activity and H2 selectivity of Ni/CeO2-γAl2O3 was higher than that of Ni/γ-Al2O3 catalyst. The results revealed that carbon deposition and coking led to the deactivation of the catalysts. Ce in the Ni/CeO2-γAl2O3 catalyst had a certain role in the inhibition of carbon deposition and coking.  相似文献   

7.
A series of mesoporous Ni–Al2O3–ZrO2 xerogel (denoted as X-NAZ) catalysts were prepared by a P123-assisted epoxide-driven sol–gel method under different P123 concentration (X, mM), and they were applied to the hydrogen production by steam reforming of ethanol. The effect of P123 concentration on the physicochemical properties and catalytic activities of X-NAZ catalysts was investigated. All the catalysts retained a mesoporous structure. Pore volume of the catalysts increased with increasing P123 concentration. Ni surface area and ethanol adsorption capacity of X-NAZ catalysts exhibited volcano-shaped trends with respect to P123 concentration. The trend of hydrogen yield was well matched with the trend of Ni surface area and ethanol adsorption capacity. Thus, Ni surface area and ethanol adsorption capacity of the catalysts served as important factors determining the catalytic performance. Among the catalysts tested, 12-NAZ catalyst with the highest Ni surface area and the largest ethanol adsorption capacity showed the best catalytic performance in the steam reforming of ethanol. In conclusion, an optimal P123 concentration was required for maximum production of hydrogen in the steam reforming of ethanol over X-NAZ catalysts.  相似文献   

8.
The aim of the present work is to analyse the effect of the Ni(II) content for the Ni(II)-Mg(II)/γ-Al2O3 catalysts on the textural and structural characteristics of the solid, as well on the catalytic activity and selectivity to H2 for the steam reforming of glycerol at atmospheric pressure.  相似文献   

9.
利用固定床反应器对一系列自制催化剂Ni/CeO2-ZrO2和商业镍基催化剂Z417在生物油水溶性组分重整制氢反应中的催化性能进行考察,研究了活性金属Ni的负载量、反应温度、水油比对催化剂活性的影响.实验结果表明:Ni负载量为12wt%的催化剂Ni/CeO2-ZrO2在生物油水溶性组分重整制氢反应中表现出最佳催化活性,当反应温度为800C和水油比为4.9时,氢产率达到最大值67.8%,氢的选择性较高,为61.8%.  相似文献   

10.
Hydrogen to be used as a raw material in fuel cells or even as a direct fuel can be obtained from steam reforming of bioethanol. The key aim of this process is to maximize hydrogen production, discouraging at the same time those reactions leading to undesirable products, such as methane, acetaldehyde, diethyl ether or acetic acid, that compete with H2 for the hydrogen atoms. Cu–Ni–K/γ-Al2O3 catalysts are suitable for this reaction since they are able to produce acceptable amounts of hydrogen working at atmospheric pressure and a temperature of 300°C. The effect of nickel content in the catalyst on the steam-reforming reaction was analyzed. Nickel addition enhances ethanol gasification, increasing the gas yield and reducing acetaldehyde and acetic acid production.  相似文献   

11.
Electrochemical hydrogen evolution reaction (HER) via the splitting of water has required electrocatalysts with cost-effectiveness, environmentally friendliness, high catalytic activity, and superior stability to meet the hydrogen economy in future. In this context, we report the successful synthesis of self-standing mesoporous Ni2P–MoP2 nanorod arrays on nickel foam (Ni2P–MoP2 NRs/3D-NF) through an effective phosphidization of the corresponding NiMoO4 NRs/3D-NF. The as-synthesis Ni2P–MoP2 NRs/3D-NF, as an efficient HER electrocatalyst, exhibits small overpotential of 82.2 and 124.7 mV to reach current density of 10 and 50 mA cm−2, a low Tafel slope of 52.9 mV dec−1 and it retains its catalytic performance for at least 20 h in alkaline condition. Our work also offers a new strategy in designing and using transition metal phosphide-based 3D nanoarrays catalysts with enhanced catalytic efficiency for mass production of hydrogen fuels.  相似文献   

12.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

13.
Active and stable Ni–Fe–SiO2 catalysts prepared by sol–gel method were employed for direct decomposition of undiluted methane to produce hydrogen and carbon filaments at 823 K and 923 K. The results indicated that the lifetime of Ni–Fe–SiO2 catalysts was much longer than Ni–SiO2 catalyst at a higher reaction temperature such as 923 K, however, a reverse trend was shown when methane decomposition took place at a lower reaction temperature such as 823 K. XRD studies suggested that iron atoms had entered into the Ni lattice and Ni–Fe alloy was formed in Ni–Fe–SiO2 catalysts. The structure of the carbon filaments generated over Ni–SiO2 and Ni–Fe–SiO2 was quite different. TEM studies showed that “multi-walled” carbon filaments were formed over 75%Ni–25%SiO2 catalyst, while “bamboo-shaped” carbon filaments generated over 35%Ni–40%Fe–25%SiO2 catalysts at 923 K. Raman spectra of the generated carbons demonstrated that the graphitic order of the “multi-walled” carbon filaments was lower than that of the “bamboo-shaped” carbon filaments.  相似文献   

14.
Advanced fouling mitigation techniques include approaches to increase the duration of the induction period and/or to decrease the fouling rate during the deposition process. One such technique is to generate heat transfer surfaces with high repulsive forces to make them less attractive to the deposition of dissolved or suspended matter. The present work investigates and compares different electroless Ni–P coatings with or without boron-nitride (BN). The incorporation of boron-nitride into Ni–P coatings increases the electron donor component of surface energy which in turn reduces the propensity of the coating to fouling. A systematic set of fouling runs has been conducted to investigate the influence of these coatings on the interaction energies between CaSO4 deposits and modified surfaces. The results show that the Ni–P coatings with Boron-nitride exhibit excellent anti-fouling behaviour compared to pure Ni–P coatings or untreated stainless steel surfaces. Surfaces having a higher electron donor component in case of Ni–P–BN produce a higher repulsive energy which causes the adhesion force between the surface and deposits to decrease. A simultaneous set of reproducibility and cleanability experiments, however, reveals that the observed surface properties of the investigated coatings are prone to significant aging after each fouling run, leading to poor abrasion resistance.  相似文献   

15.
On-board reforming of liquid fuels is attractive for fuel cell-powered auxiliary power units in vehicles. In this work, monometallic Ni/Al2O3/cordierite, Rh/Al2O3/cordierite and bimetallic Ni–Rh/Al2O3/cordierite monolithic catalysts were prepared, characterized and tested in ATR of isooctane for syngas production. Compared to monometallic formulations, the bimetallic Ni–Rh/Al2O3 catalyst was active for ATR at lower temperature and H2 production already reached the equilibrium composition in 400–550 °C temperature range. The Ni–Rh/Al2O3 catalyst exhibited stable performances for 140 h in ATR of isooctane at 700 °C, and was unaffected by oxidizing conditions at 700 °C. Thermoneutral reactions conditions at H2O/C = 2 were obtained with O/C = 0.66. Carbon deposition was marginal during ATR of isooctane and no carbons whiskers were detected. Post-reaction characterizations showed that the Ni particles were small enough to prevent filamentous carbon formation, while Rh also prevented carbon film deposition by improving the gasification of adsorbed C with steam.  相似文献   

16.
17.
在非晶硅电池的三种基本形式中,M/a-Si肖特基势垒结构发展得最早,曾一度领先,但由于它的开路电压受所用金属功函数的限制,加之存在稳定性问题,因而缺乏足够的竞争力。针对这些问题,已经开展了广泛的研究。 我们发现,不稳定性主要来自M/a-Si肖特基结的退化,而这种退化过程不仅受外界环  相似文献   

18.
Steam reforming of acetic acid, one model compounds of bio-oil, was studied on the Ni/ZrO2–CeO2 catalysts which were prepared by the impregnation method. The results showed that high acetic acid conversion and hydrogen yield were obtained in the temperature range of 650–750 °C when H2O/HAC ratio was 3. Nevertheless, the catalyst deactivation was caused by carbon deposition eventually with time-on-stream. In order to discuss the behavior of the carbon deposition on the Ni/ZrO2–CeO2 catalyst during steam reforming of bio-oil, the structure and morphology of carbon deposition were investigated by BET, XRD, TG/DTA, TPR, SEM and EDX techniques. All the experimental results showed acetone and CO were the important carbon precursors of acetic acid reforming and the graphitic-like carbon was the main type of carbon deposition on the surface of the deactivated 12%Ni/CeO2–ZrO2 catalyst.  相似文献   

19.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

20.
研究了在不同的激光扫描速度下对45#钢表面进行Ni/Cr3C2激光熔覆处理,并对合金层组织、显微硬度和物相进行了分析.结果表明:激光扫描速度对Ni/Cr3C2合金层的组织和显微硬度有很大的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号