首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on acetic acid steam reforming (AASR) for the production of hydrogen over synthesized a complex catalyst via metal-organic framework (MOF) process supported on Al2O3/La2O3/CeO2 (ALC) named Ni-Complex/ALC. The catalytic activity and stability of the synthesized catalyst compared with a catalyst of the same composition prepared using nickel format precursor via wet impregnation wetness method. Catalytic reaction was tested for both catalysts under atmospheric pressure at different temperatures ranging from 300 to 650 °C, with S/C ratio = 6.5 and weight hour space velocity (WHSV) 1.05 h−1. Acetic acid conversion and product distribution were observed for 36 h of reaction. The results showed that activity of the catalyst prepared using MOF process showed a better yield towards hydrogen production and stability against coke deposition due to regular pore structure and more amount of oxygen molecules available present on the surface. The yield of H2 was found to be approx. 90%, i.e., close to the theoretical stoichiometric limit.  相似文献   

2.
Olivine, a natural mineral consisting of different metal oxides (mainly Mg, Si and Fe oxides) was used as a support for nickel catalyst used in steam reforming of ethanol. Catalyst containing different wt% of Ni on olivine were prepared by conventional wet-impregnation method and characterized by BET, XRD, SEM (coupled with EDS) and H2-TPR. The reaction was carried out in a tubular fixed bed reactor. Among all the catalysts, 5% Ni on olivine catalyst gave highest hydrogen yield as well as ethanol conversion through ethanol steam reforming reaction. The catalyst activity was analyzed by varying three important process parameters (temperature, ethanol to water molar ratio and space-time). The reaction was performed in the temperature range of 450 °C to 550 °C with 1:6 to 1:12 M feed ratio of ethanol to water at a space-time range 7.21–15.87 kg cat h/kmol ethanol. A maximum yield of 4.62 mol of hydrogen per mole of ethanol reacted was obtained at 550 °C with ethanol to steam molar ratio of 1:10 and space-time of 7.94 kg cat h/kmol ethanol with the ethanol conversion level of 97%. CHNS analysis of the spent catalyst was performed to find the coke deposited over the catalyst surface during the reaction. The power law and LHHW type kinetic models were developed. The power law model predicts the activation energy as 29.07 kJ/mol, whereas the LHHW type model gives the activation energy as 27.4 kJ/mol.  相似文献   

3.
The effect of the zirconia structure in Ni/ZrO2 catalysts on the glycerol steam reforming (GSR) reaction was studied. A tetragonal zirconia support was synthesized via a hydrolysis technique and loaded with 5 wt% Ni via a wet-impregnation method. Similarly, a commercial monoclinic zirconia support was also impregnated with 5 wt% Ni. Following calcination at 600 °C, physico-chemical properties of the prepared catalysts were investigated by X-Ray Diffraction (XRD), H2-Temperature Programmed Reduction (H2-TPR) and CO2-Temperature Programmed Desorption (CO2-TPD) techniques. The catalysts were then tested in the GSR reaction in the 400–700 °C range with a steam to glycerol molar ratio of 9:1 and a flow rate of 0.025 mL/min. The monoclinic catalyst exhibited a better performance giving higher hydrogen yields and glycerol conversions. This was attributed to an improved reducibility of Ni in this catalyst. Stability tests at 600 °C revealed the deactivation of the tetragonal catalyst during 6 h as a result of the formation of encapsulating coke which blocked active Ni metal sites. The monoclinic catalyst, exhibiting the formation of only filamentous coke, remained relatively stable for 24 h.  相似文献   

4.
Acetic acid (AcOH) steam reforming for hydrogen (H2) generation was investigated using a zero valent nickel complex (Ni-comp) derived from a metal-organic framework precursor supported over aluminum oxide/lanthanum oxide-cerium dioxide (ALC). The effects of Ni loading ratio (10, 15, and 20 wt%) on the catacatalytic activity were investigated in the range of 400 to 650 °C to H2 generation. The Ni-comp/ALC catalysts exhibited almost complete conversion of AcOH (XAcOH >98%) to H2 (XH2>90%) alongside some impurities (e.g., carbon monoxide, methane, and carbon dioxide). A maximum H2 yield (91.36% (0.064 mol-1 gcat−1 h−1)) was attained at the following conditions: 15 wt% Ni loading, steam to carbon molar ratio of 6.5, weight hourly space velocity of 1.05 h−1, and 600 °C. The 15 wt% Ni catalyst maintained sufficient stability over 40 h reaction time. Accordingly, Ni-comp-ALC interactions were seen to efficiently improve the activity and stability of the catalyst so as to synergistically resist coke deposition and metal sintering through the formation of a large number of free Ni particles and oxygen vacancies.  相似文献   

5.
Oxidative dry reforming of methane has been performed for 100 h on stream using Ni supported on MgAl2O4 spinel at different loadings at 500–700 °C, CO2/CH4 molar ratio of 0.76, and variable O2/CH4 molar ratio (0.12–0.47). Syngas with an H2/CO ratio of 1.5–2.1 has been produced by manipulating reforming feed composition and temperature. The developed oxidative dry reforming process allowed high CH4 conversion at all conditions, while CO2 conversion decreased significantly with the lowering of the reforming temperature and increasing O2 concentration. When considering both greenhouse gas conversions and H2/CO ratio enhancement, the optimal reforming condition should be assigned to 550 °C and O2/CH4 molar ratio of 0.47, which delivered syngas with H2/CO ratio of 1.5. Coke-free operation was also achieved, due to the combustion of surface carbon species by oxygen. The 3.4 wt% Ni/MgAl2O4 catalyst with a mean Ni nanoparticle diameter of 9.8 nm showed stable performance during oxidative dry reforming for 100 h on stream without deactivation by sintering or coke deposition. The superior activity and stability of MgAl2O4 supported Ni catalyst shown during reaction trials is consistent with characterization results from XRD, TPR, STEM, HR-STEM, XPS, and CHNS analysis.  相似文献   

6.
As the only H2 resource on aircraft from the steam reforming of the jet fuels on board, catalytic steam reforming of JP-10 (one of Jet fuels) over nickel-based catalyst Ni/SBA-15 were first carried out in a fixed bed tube reactor to produce hydrogen on-site or on board. A series of Ni/SBA-15 catalysts with different Ni content (3, 5, 8 and 10.8 wt%) were prepared by a modified incipient wetness impregnation method with addition of sucrose as ligand. And the effect of operation conditions of temperature (630–700 °C), nickel loading, liquid hour space velocity (LHSV = 5, 10, 15 ml/gcat·h), steam to carbon molar ratio (S/C = 3, 5) on the catalytic activity and selectivity was investigated. It was found that 8Ni/SBA-15 was the optimal catalyst for steam reforming of JP-10 even with a higher LHSV and fuel gas concentration, and approximately 100% conversion of JP-10 with over 80% selectivity to hydrogen under the recommended experimental conditions of 680 °C, S/C of 5, LHSV of 10 ml/gcat·h. The catalytic activity of 8Ni/SBA-15 dropped slowly to 84% after 6.5 h in the stability test and the carbon deposited was less with just 6% mass loss from TGA measurement (coke deposition rate 0.01gC/gcath), which ascribed to possible reasons including confine effect of mesochannel of SBA-15, strengthened structure of mesochannels due to embeded Ni particles, and higher temperature to suppress the main carbon producing reaction.  相似文献   

7.
A high energy content (∼122 MJ/kg H2) and presence of hydrogen-bearing compounds abundance in nature make hydrogen forth runner candidate to fulfill future energy requirements. Biomass being abundant and carbon neutral is one of the promising source of hydrogen production. In addition, it also addresses agricultural waste disposal problems and will bring down our dependency on fossil fuel for energy requirements. Biomass-derived bio-oil can be an efficient way for hydrogen production. Acetic acid is the major component of bio-oil and has been extensively studied by the researchers round the globe as a test component of bio-oil for hydrogen generation. Hydrogen can be generated from acetic acid via catalytic steam reforming process which is thermodynamically feasible. A number of nickel-based catalysts have been reported. However, the coke deposition during reforming remains a major challenge. In this review, we have investigated all possible reactions during acetic acid steam reforming (AASR), which can cause coke deposition over the catalyst surface. Different operating parameters such as temperature and steam to carbon feed ratio affect not only the product distribution but also the carbon formation during the reaction. Present review elaborates effects of preparation methods, active metal catalyst including bimetallic catalysts, type of support and microstructure of catalysts on coke resistance behavior and catalyst stability during reforming reactions. The present study also focuses on the effects of a combination of a variety of alkali and alkaline earth metals (AAEM) promoters on coke deposition. Effect of specially designed reactors and the addition of oxygen on carbon deposition during AASR have also been analyzed. This review based on the available literature focuses mainly on the catalyst deactivation because of coke deposition, and possible strategies to minimize catalyst deactivation during AASR.  相似文献   

8.
《Journal of power sources》2006,156(2):520-524
Because of the need for an efficient and inexpensive reforming catalyst, the objective of this work is to determine the feasibility of employing Mo2C catalyst for the steam reforming and oxy-steam reforming of the higher hydrocarbons typical of transportation fuels such as gasoline. It is shown that bulk Mo2C catalysts can successfully reform 2,2,4-trimethyl pentane (isooctane) to generate H2, CO and CO2 at very low steam/carbon ratios, without coke formation, eliminating the need for pre-reforming. Maximum hydrogen generation was observed at a S/C ratio of 1.3 and 1000 °C during SR reactions and S/C of 0.71, O2/C of 0.12 at 900 °C during oxidative steam reforming reactions.  相似文献   

9.
In this study, catalytic activity of carbon dioxide reforming of methane was investigated over nickel-cobalt catalysts in various structural forms. Catalytic activity tests were performed at the temperatures of 600–800 °C in a micro-flow quartz reactor. SEM-EDX, XRD and XPS studies were also performed to understand the surface morphology of the catalysts. The results showed that 8 wt%Ni-2wt.%Co on wash-coated MgO over monolithic structure led to highest catalytic performances with CH4 and CO2 conversions of 83% and 89% respectively as well as H2/CO ratio of 0.95 at 750 °C. SEM-EDX and XPS results of catalyst spent at 750 °C also showed considerable amount of coke formation; however, the use of 3% oxygen in the feed suppressed the coke formation significantly. The catalyst was stable for 48 h in the presence of O2 (3%) added feed at the temperature of 750 °C.  相似文献   

10.
A green template-free method is proposed for the synthesis of mesoporous Ni–Cu/Al2O4 catalyst in sub-kilogram scale. In the convenient synthetic method, an intermediate is formed via electrostatic forces and hydrogen bonding interactions between the aluminate ions and the metal ions and/or metal hydroxides under suitable pH conditions. The desired Ni–Cu/Al2O4 composites, with Ni/Cu molar ratios of 10%, 20% and 30% of Cu at Cu/Al molar ratio of 10.0%, respectively, are then obtained from calcination. The nitrogen adsorption-desorption isotherms show that the Ni–Cu/Al2O4 composites have specific surface areas of 136–170 m2g-1. The Ni–Cu/Al2O4 products are used as catalyst materials in the methanol steam reforming (MSR) of hydrogen and are shown to have a high conversion efficiency (>99%), a low methane concentration, good stability, and a high hydrogen yield (H2/methanol molar ratio ≈ 3.0) at low reaction temperatures in the range of 200–300 °C. In addition, the coke formation on the catalyst surface is less than 1.0 wt% even after a reaction time of 30 h. Notably, the Ni–Cu/Al2O4 catalyst can be regenerated by calcination at 800 °C and retains a high methanol conversion efficiency of close to >99% when reused in MSR.  相似文献   

11.
The deactivation by coke deposition of Ni and Co catalysts in the steam reforming of ethanol has been studied in a fluidized bed reactor under the following conditions: 500 and 700 °C; steam/ethanol molar ratio, 6; space time, 0.14 gcatalyst h/gethanol, partial pressure of ethanol in the feed, 0.11 bar, and time on stream up to 20 h. The decrease in activity depends mainly on the nature of the coke deposited on the catalysts, as well as on the physical–chemical properties (BET surface area, pore volume, metal surface area) of the catalysts. At 500 °C (suitable temperature for enhancing the WGS reaction, decreasing energy requirements and avoiding Ni sintering), the main cause of deactivation is the encapsulating coke fraction (monoatomic and polymeric carbon) that blocks metallic sites, whereas the fibrous coke fraction (filamentous carbon) coats catalyst particles and increases their size with time on stream with a low effect on deactivation, especially for catalysts with high surface area. The catalyst with 10 wt% Ni supported on SiO2 strikes a suitable balance between reforming activity and stability, given that both the capability of Ni for dehydrogenation and C–C breakage and the porous structure of SiO2 support enhance the formation of filamentous coke with low deactivation. This catalyst is suitable for use at 500 °C in a fluidized bed, in which the collision among particles causes the removal of the external filamentous coke, thus minimizing the pore blockage of the SiO2. At 700 °C, the coke content in the catalyst is low, with the coke being of filamentous nature and with a highly graphitic structure.  相似文献   

12.
In this study, sorption-enhanced methanol steam reforming (SEMSR) was applied to generate high-purity hydrogen. The mesoporous MCM-41 as support and CuO, ZnO, CeO2, ZrO2 as active agents and promoters were employed for the catalyst preparation. In addition, (Li–Na–K) NO3·MgO as a CO2 adsorbent was prepared by the wet mixing method. The fresh and used catalysts were characterized by XRD, BET, FTIR, FESEM, TEM, H2-TPR and TGA analyses. Also, the CO2 sorbent was studied by XRD, BET, FESEM, TEM and TGA analyses before and after the reaction. The SEMSR performances of the synthesized catalyst and adsorbent were evaluated experimentally in a fixed-bed reactor. The effect of various conditions such as temperature, WHSV, feed molar ratio and sorbent/catalyst ratio were investigated. The best results were obtained at 300 °C, a feed molar ratio (water/methanol) of 2:1, a WHSV of 1.62 h?1, and the sorbent/catalyst ratio of 8:1, which produced 99.8% hydrogen, 25% more than the hydrogen production during conventional methanol steam reforming. Moreover, the cyclic stability of the catalyst and the sorbent was studied for 10 cycles.  相似文献   

13.
CH3OH steam reforming is an attractive way to produce hydrogen with high efficiency. In this study, CuO.xAl2O3 (x = 1, 2, 3, and 4) were fabricated based on the solid-state route, and the calcined samples were employed in methanol steam reforming at atmospheric pressure and in the temperature range of 200–450 °C. The results revealed that all samples have a high BET area (173–275 m2 g−1), and their crystallinity was reduced by increasing the alumina content in the catalyst formulation. The catalytic activity tests showed that the CH3OH conversion and H2 selectivity decreased by rising the Al2O3·CuO molar ratio. The methanol conversion enhanced from 13% to 85% by increasing the reaction temperature from 200 °C to 450 °C over the CuO·Al2O3 catalyst, due to the higher reducibility of this catalyst at lower temperatures compared to other prepared samples. The influence of calcination temperature (300–500 °C), GHSV (28,000–48000 ml h−1. g−1cat), feed ratio (C:W = 1:1 to 1:9), and reduction temperature (250–450 °C) was also determined on the yield of the chosen sample. The results revealed that the maximum methanol conversion decreased from 90 to 79% by raising the calcination temperature from 300 to 500 °C due to the reduction of surface area and sintering of species at high calcination temperatures.  相似文献   

14.
The hydrogasification of Refuse Derived Fuel (RDF) consisting of non-recyclable plastic polymers was combined with methane steam reforming in a “hydrogen self-sustained” loop configuration. The hydrogasification unit fed by 1000 kg/h of RDF was initially modeled by Aspen plus to define best operating conditions, namely temperature, pressure and hydrogen feed flow rate. After the simulations, the temperature of the hydrogasification process has been fixed at 300 °C, the pressure at 10 bar and the hydrogen feed flow rate at 140 kg/h. The steam reforming unit operates at 850 °C while the water-gas shift is conducted at 350 °C. When all the methane produced by hydrogasification is used to feed the steam reformer, which yields H2 that is recycled back to the hydrogasifier, the net hydrogen production is 222 kg/h with an amount of CO2 released of 2265 kg/h. For the different process configurations adopted, the energy efficiency of the process ranges 84–89%.  相似文献   

15.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

16.
The effect operating conditions (temperature, space time, steam/ethanol molar ratio, ethanol partial pressure and time on stream) have on the activity and stability of a Ni/SiO2 catalyst for H2 production by ethanol steam reforming has been studied in a fluidized bed reactor. This catalyst allows obtaining total conversion above 500 °C, with a steam/ethanol molar ratio of 6 and a space time of 0.138 gcatalysth/gethanol. Catalyst deactivation in the 300–500 °C range is due to coke deposition, whose nature (determined by TPH and TPO analysis) mainly depends on reaction temperature. The coke deposited at 300 °C is amorphous and blocks metallic sites, whereas at higher temperatures the coke is mainly filamentous and, although its content increases as reaction temperature is raised to 500 °C, it has a low effect on catalyst deactivation because it does not block metal sites. Above 600 °C the decrease in coke content due to gasification is noticeable, although at this temperature an incipient Ni sintering is observed, which is significant at 700 °C.  相似文献   

17.
Layered double hydroxides obtained via co-precipitation method possess a kind of hydrotalcite structure comprising Ni2+/Co2+/Mg2+/Al3+cations in various amounts. Upon calcination of the hydrotalcite precursor, NiCoMgAl mixed oxides catalysts of varying Ni:Co ratio (0.3, 1.0 and 3.0) were obtained. These catalysts were tested for steam reforming of acetone at temperatures between 450 and 550 °C, with a molar feed (water/acetone) ratio of 4–10 and in the space-time range of 10–24 kg cat h/kmol acetone. Around 99% conversion of acetone was obtained over all the mixed oxide catalysts. However, a maximum hydrogen selectivity of ∼80% was obtained over NiCoMgAl(0.33). The time-on-stream behaviour was studied for 4 h at 500 °C and water/acetone molar ratio of 6. The catalyst showed good stability at the reforming conditions. Both homogeneous and heterogeneous kinetic models were developed for the complex reforming reaction systems.  相似文献   

18.
Alkyl-phenols and hydroxy- or methoxy-phenols (e.g., catechols, guaiacols and syringols) tend to polymerize into carbonaceous structures, causing clogging of reaction equipment and high coke deposition during bio-oil steam reforming (SR). In this work, removal of these phenolic compounds from raw bio-oil was addressed by accelerated aging and liquid-liquid extraction methods. The solvent-anti-solvent extraction with dichloromethane and water was suitable for obtaining a treated bio-oil appropriate for SR. The effect that phenols extraction has on the stability and regenerability of a NiAl2O4 spinel catalyst was studied by conducting reaction-regeneration cycles. Operating conditions were: 700 °C; S/C, 6; space-time, 0.15 gcatalysth/gbio-oil (reaction step), and in situ coke combustion at 850 °C for 4 h (regeneration step). Fresh, deactivated and regenerated catalyst samples were analyzed by temperature programmed oxidation (TPO), temperature programmed reduction (TPR) and X-ray diffraction (XRD). Stability of the Ni-spinel derived catalyst was significantly improved by removing phenols due to attenuation of both coke deposition and Ni sintering. Regenerability of this catalyst was also slightly improved when reforming the treated bio-oil.  相似文献   

19.
Ethanol steam reforming (ESR) is one of the most promising reliable and recyclable technologies for hydrogen production. However, the development of robust, efficient Ni-based catalysts that minimize metal sintering and carbon deposition remains a key challenge. The influence of cobalt loading and ESR conditions on H2 selectivity and catalytic stability is the focus of this study. Ni–Co/Al2O3 catalysts with various Co percentages were prepared by the co-impregnation method and complementary characterization tests were performed. Among the catalysts tested, Ni–Co/Al2O3 (5 wt% Co) exhibited the smallest metal crystallite size, the highest surface area, and the best catalytic performance. Thereafter, the effects of temperature, LHSV and S:C molar ratio were studied. 100% ethanol conversion and maximum H2 selectivity (95.14%) were reached at 600 °C, 0.05 L/gcat.h and S:C molar ratio of 12:1. Furthermore, ethanol turnover frequency (TOF) was computed for each catalyst. TOF results showed that the Ni–Co interaction had an impact on the catalytic activity. Finally, Ni2CoAl was subjected to 50-h stability test and only 6.12 mgcarbon/gcat.h coke deposition was observed.  相似文献   

20.
The complex mixture of gasified tar model (phenol, toluene, naphthalene, and pyrene) was steam reformed for hydrogen production over 10 wt% nickel based catalysts. The catalysts were prepared by co-impregnation method with dolomite promoter and various oxide supports (Al2O3, La2O3, CeO2, and ZrO2). Steam reforming was carried out at 700 °C at atmospheric pressure with steam to carbon molar ratio of 1 and gas hourly space velocity of 20 L/h·gcat. The catalysts were characterised for reducibility, basicity, crystalline, and total surface area properties. Dolomite promoter strengthened the metal-support interaction and basicity of catalyst. The Ni/dolomite/La2O3 (NiDLa) catalyst with mesoporous structure (26.42mn), high reducibility (104.42%), and strong basicity (5.56 mmol/g) showed superior catalytic performance in terms of carbon conversion to gas (77.7%), H2 yield (66.2%) and H2/CO molar ratio (1.6). In addition, the lowest amount of filamentous coke was deposited on the spent NiDLa after 5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号