首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the hydrogen production performance of microreactors, the selective laser melting method was proposed to fabricate the porous metals as catalyst supports with different pore structures, porosities, and materials. The influence of the porous structures on the molecule distribution after passing through the porous metals was analyzed by molecular dynamics simulation. The developed porous metals were then used as catalyst supports in a methanol steam reforming microreactor for hydrogen production. Our results show that the porosity of the porous metal had significantly influence on the catalyst infiltration and the reaction process of hydrogen production. A lower degree of catalyst infiltration of the porous metal was obtained with lower porosity. A copper layer-coated stainless-steel porous metal with a staggered structure and gradient porosity of 80%–60% exhibited much larger methanol conversion and H2 flow rate due to its better heat and mass transfer characteristic. Methanol conversion and H2 flow rates could reach 97% and 0.62 mol/h, respectively. Finally, it was found that the experimental results were in good agreement with the simulation results.  相似文献   

2.
In this paper, an additive manufacturing prepared porous stainless steel felt (AM-PSSF) is proposed as a novel catalyst support for hydrogen production via methanol steam reforming (MSR). In the method, 316 L stainless steel powder with diameter of 15–63 μm is processed by the additive manufacturing technology of selective laser melting (SLM). To accomplish the preparation, the reforming chamber where the AM-PSSF is embedded is firstly divided into an all-hexahedron mesh. Then, the triply periodic minimal surface (TPMS) unit with mathematical form, high interconnectivity and large specific surface area is mapped into the hexahedrons based on shape function, forming the fully connected three-dimensional (3D) micro pore structure of the AM-PSSF. By correlating the mathematical parameter and the porosity of the TPMS unit, and taking into account the SLM process, the porosity of the AM-PSSF is well controlled. Based on the designed 3D pore structure model, the AM-PSSF is produced using standard SLM process. The application of the AM-PSSF as catalyst support for hydrogen production through MSR indicates that: 1) both the naked and catalyst-coated AM-PSSF have the characteristics of high porosity, large specific surface area and high connectivity; 2) the MSR hydrogen production performance of the AM-PSSF is better than that of the commercial stainless steel fiber sintered felt. The feasibility of AM-PSSF as catalyst support for MSR hydrogen production may pave a better way to balance different requirements for catalyst support, thanks to the excellent controllability provided by AM on both the external shape and the internal pore structure, and to the produced rough surface morphology that benefits the catalyst adhesion strength. In addition, catalyst support with pore structures that are more accommodated with the flow field and the reaction rate of MSR reaction may be prepared in future, since the entire catalyst support structure, from macro scale to micro scale, is under control.  相似文献   

3.
To replace the traditional electric heating mode and increase methanol steam reforming reaction performance in hydrogen production, methanol catalytic combustion was proposed as heat-supply mode for methanol steam reforming microreactor. In this study, the methanol catalytic combustion microreactor and self-thermal methanol steam reforming microreactor for hydrogen production were developed. Furthermore, the catalytic combustion reaction supports with different structures were designed. It was found that the developed self-thermal methanol steam reforming microreactor had better reaction performance. Compared with A-type, the △Tmax of C-type porous reaction support was decreased by 24.4 °C under 1.3 mL/min methanol injection rate. Moreover, methanol conversion and H2 flow rate of the self-thermal methanol steam reforming microreactor with C-type porous reaction support were increased by 15.2% under 10 mL/h methanol-water mixture injection rate and 340 °C self-thermal temperature. Meanwhile, the CO selectivity was decreased by 4.1%. This work provides a new structural design of the self-thermal methanol steam reforming microreactor for hydrogen production for the fuel cell.  相似文献   

4.
In this experimental work, the ethanol steam reforming reaction is performed in a porous stainless steel supported palladium membrane reactor with the aim of investigating the influence of the membrane characteristics as well as of the reaction pressure. The membrane is prepared by electroless plating technique with the palladium layer around 25 μm deposited onto a stainless steel tubular macroporous support. The experimental campaign is directed both towards permeation and reaction tests. Firstly, pure He and H2 are supplied separately between 350 and 400 °C in the MR in permeator modality for calculating the ideal selectivity αH2/He. Thus, the MR is packed with 3 g of a commercial Co/Al2O3 catalyst and reaction tests are performed at 400 °C, by varying the reaction pressure from 3.0 to 8.0 bar. Experimental results in terms of ethanol conversions as well as recovery and purity of hydrogen are given and compared with some results in the same research field from the open literature.As best result of this work, 100% ethanol conversion is reached at 400 °C and 8 bar, recovering a hydrogen-rich stream consisting of more than 50% over the total hydrogen produced from reaction, having a purity around 65%.  相似文献   

5.
In this study, the porous Cu-Al fiber sintered felt (PCAFSF) was fabricated by low temperature solid-phase sintering method. The laminated PCAFSF as the catalyst support was used for cylindrical methanol steam reforming microreactor for hydrogen production. The two-layer impregnation method was employed to coat the Cu/Zn/Al/Zr catalyst on the PCAFSF. The material composition, specific surface area and catalyst loading of PCAFSF were also measured. The effect of the fiber material, surface morphology and porosity on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCAFSF demonstrated much higher methanol conversion and H2 flow rate compared to the porous Cu fiber sintered felt (PCFSF) and porous Al fiber sintered felt (PAFSF) having the same porosity. Furthermore, the rough PCAFSF showed much higher methanol conversion and H2 flow rate compared to the smooth PCAFSF. In case of the PCAFSF, the methanol conversion and H2 flow rate were increased with the decrease of Cu fiber weight and the increase of Al fiber weight. The best reaction performance of microreactor for hydrogen production was obtained using the three layer PCAFSFs with 80% porosity and 1.12 g Cu fiber/1.02 g Al fiber.  相似文献   

6.
Methanol steam reforming (MSR) is an attractive option for in-situ hydrogen production and to supply for transportation and industrial applications. This paper presents a novel thermally autonomous MSR microreactor that uses silicon carbide (SiC) honeycomb ceramic as a catalyst support to enhance energy conversion efficiency and hydrogen production. The structural design and working principle of the MSR microreactor are described along with the development of a 3D numerical model to study the heat transfer and fluid flow characteristics. The simulation results indicate that the proposed microreactor has a significantly low drop in pressure and more uniform temperature distribution in the SiC ceramic support. Further, the microreactor was developed and an experimental setup was conducted to test its hydrogen production performance. The experimental results show that the developed microreactor can be operated as thermally autonomous to reach its target working temperature within 9 min. The maximum energy efficiency of the microreactor is 67.85% and a hydrogen production of 316.37 ml/min can be achieved at an inlet methanol flow rate of 360 μl/min. The obtained results demonstrate that SiC honeycomb ceramic with high thermal conductivity can serve as an effective catalyst support for the development of MSR microreactors for high volume and efficient hydrogen production.  相似文献   

7.
A porous copper fiber sintered felt (PCFSF) as catalyst support is used to construct a methanol steam reforming microreactor for hydrogen production. The PCFSF has been produced by solid-state sintering of copper fibers which is fabricated using the cutting method. The impregnation method is employed to coat Cu/Zn/Al/Zr catalyst on the PCFSF. In this study, the effect of the porosity and manufacturing parameters for the PCFSF on the performance of methanol steam reforming microreactor is studied by varying the gas hourly space velocity (GHSV) and reaction temperature. When the 80% porosity PCFSF sintered at 800 °C in the reduction atmosphere is used as catalyst support, it is found that the microreactor shows remarkable superiority in the methanol conversion and H2 flow rate in comparison to the ones fabricated under other manufacturing parameters. Moreover, the microreactor with this catalyst-coated PCFSF also demonstrates the excellent stability of catalytic reaction in the methanol steam reforming process.  相似文献   

8.
A numerical simulation of methanol steam reforming in a microreactor integrated with a methanol micro-combustor is presented. Typical Cu/ZnO/Al2O3 and Pt catalysts are considered for the steam reforming and combustor channels respectively. The channel widths are considered at 700 μm in the baseline case, and the reactor length is taken at 20 mm. Effects of Cu/ZnO catalyst thickness, gas hourly space velocities of both steam reforming and combustion channels, reactor geometry, separating substrate properties, as well as inlet composition of the steam reforming channel are investigated. Results indicate that increasing catalyst thickness will enhance hydrogen production by about 68% when the catalyst thickness is increased from 10 μm to 100 μm. Gas space velocity of the steam reforming channel shows an optimum value of 3000 h−1 for hydrogen yield, and the optimum value for the space velocity of the combustor channel is calculated at 24,000 h−1. Effects of inlet steam to carbon ratio on hydrogen yield, methanol conversion, and CO generation are also examined. In addition, effects of the separating substrate thickness and material are examined. Higher methanol conversion and hydrogen yield are obtained by choosing a thinner substrate, while no significant change is seen by changing the substrate material from steel to aluminum with considerably different thermal conductivities. The produced hydrogen from an assembly of such microreactor at optimal conditions will be sufficient to operate a low-power, portable fuel cell.  相似文献   

9.
To obtain the flexible microreactor for potential application in constrained space, a novel flexible tubular microreactor was designed by using a corrugated shell and a high porosity porous copper fiber rod (PCFR) as catalyst support. The effect of placement position, bending direction, and bending angle on reaction performance of flexible tubular microreactor was investigated. Then, the stability of flexible tubular microreactor was further evaluated. The experimental results showed that the placement position and bending direction had a significant influence on the reaction performance of flexible tubular microreactor. Methanol conversion of flexible tubular microreactor with the vertical placement was 6.67% higher than that with horizontal placement. Higher methanol conversion and H2 flow rate were obtained when the microreactor bent along the vertical direction. The reaction performance of flexible tubular microreactor was found to decrease as the bending angle increased, and the methanol conversion decreased by around 14.07% with a bend of 90°. When the flexible tubular microreactor was horizontal placed with a bend of 60° in the vertical direction, the reaction performance of microreactor was not changed little after 20 cyclic bending. After continuous bending for 10 h, the methanol conversion and H2 flow rate of flexible tubular microreactor were 70.58% and 0.88 mol/h, showing good reaction performance.  相似文献   

10.
In this study, a laser micro-milling technique was introduced into the fabrication process of surface microchannels with different geometries and dimensions on the porous copper fiber sintered felts (PCFSFs). The PCFSFs with surface microchannels as catalyst supports were then used to construct a new type of laminated methanol steam reforming microreactor for hydrogen production. The microstructure morphology, pressure drop, velocity and permeability of PCFSF with surface microchannels were studied. The effect of surface microchannel shape (rectangular, stepped, and polyline) and catalyst loading amount on the reaction performance of methanol steam reforming microreactor for hydrogen production was further investigated. Our results show that the PCFSF with rectangular microchannels demonstrated a lower pressure drop, higher average velocity and higher permeability compared to the stepped and polyline microchannel. Furthermore, the PCFSF with rectangular microchannels also exhibited the highest methanol conversion and H2 flow rate. The best reaction performance of methanol steam reforming microreactor for hydrogen production was obtained using PCFSF with rectangular microchannels when 0.5 g catalyst was loaded.  相似文献   

11.
Porous SiC ceramic as catalyst support with porous CuO/ZnO/CeO2/ZrO2 catalyst was fabricated via solution combustion method and used in a microreactor. A pore-in-pore hierarchical structure was formed on the support by using glycol as the fuel. The effects of fuel/nitrates molar ratio on the particle size, residual carbon, reducibility and structure of catalyst on the support were investigated. The optimal content of glycol was proposed and the catalytic performance of microreactor was further studied. Results showed that the catalyst loading amount was about 20% weight of the whole support and the loading intensity was strong. Moreover, the microreactor achieved a 100% methanol conversion rate at 280 °C and the conversion rate stayed around 95% after 30 h reaction by using the support over the optimal content of glycol, which exhibited excellent superiority in the methanol steam reforming process.  相似文献   

12.
In this work, several composite membranes were prepared by Pd electroless plating over modified porous stainless steel tubes (PSS). The influence of different siliceous materials used as intermediate layers was analyzed in their hydrogen permeation properties. The addition of three intermediate siliceous layers over the external surface of PSS (amorphous silica, silicalite-1 and HMS) was employed to reduce both roughness and pore size of the commercial PSS supports. These modifications allow the deposition of a thinner and continuous layer of palladium by electroless plating deposition. The technique used to prepare these silica layers on the porous stainless steel tubes is based on a controlled dip-coating process starting from the precursor gel of each silica material. The composite membranes were characterized by SEM, AFM, XRD and FT-IR. Moreover they were tested in a gas permeation set-up to determine the hydrogen and nitrogen permeability and selectivity. Roughness and porosity of original PSS supports were reduced after the incorporation of all types of silica layers, mainly for silicalite-1. As a consequence, the palladium deposition by electroless plating was clearly influenced by the feature of the intermediate layer incorporated. A defect free thin palladium layer with a thickness of ca. 5 μm over the support modified with silicalite-1 was obtained, showing a permeance of 1.423·10−4 mol m−2 s−1 Pa−0.5 and a complete ideal permselectivity of hydrogen.  相似文献   

13.
This study provides a kinetic examination of methanol steam reforming (MSR) over a Cu-based commercial catalyst (CuO/ZnO/Al2O3, Alfa Aesar) as a function of CH3OH and H2O partial pressures at 246 °C and 1 atm in a once-through flow reactor. A power rate law was used to best describe the experimental rate data by linear and non-linear regressions at the operating conditions where transport bottlenecks were eliminated. Comparison of the rate parameters indicated that a strong correlation was suggested by non-linear regression giving reaction orders of 0.29 for methanol and 0.09 for water along with a frequency factor of 53.48 (molCH3OH s−1 gcatalyst−1 kPa−0.38) and an activation energy of 65.59 kJ mol−1. A simulation study of the rate equation to analyze an integrated system of a reformer and an HT-PEMFC was also conducted. The results demonstrate that the system has the potential to produce 15 W power output.  相似文献   

14.
To improve hydrogen production (HP) performance of regular-porous structure (RPS), a columnar RPS with small specific surface area and high superficial area is developed. A numerical simulation model of regular-porous stainless steel structure (RPSSS) is established. Subsequently, heat transfer performance, pressure loss, temperature, methanol concentration, H2 concentration distributions and HP performance of the columnar RPSSS with small specific surface area and high superficial area and the body-centered cubic RPSSS with high specific surface area and small superficial area are compared. Then, temperature, methanol concentration, H2 concentration distributions and HP performance of axial and longitudinal size-enlarged columnar RPSSSs are studied. The results show that compared to the body-centered cubic RPSSS, the columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. Especially in the condition of 300 °C wall temperature and 12 mL/h methanol-water mixture injection rate (MWMIR), the methanol conversion, H2 flow rate and CO selectivity of the columnar RPSSS are increased by 12.3%, 9.24% and 30%, respectively, indicating that the superficial area of RPSSS is more important for its HP performance compared to its specific surface area. Compared to the longitudinal size-enlarged columnar RPSSS, the axial size-enlarged columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. This research work provides a new method for the optimization of hydrogen production reaction support (HPRS).  相似文献   

15.
Porous silica coated Ni/CeO2ZrO2 catalysts were synthesized for steam reforming of acetic acid. The silica coated Ni/CeO2ZrO2 catalyst showed a significantly enhanced activity (95% acetic acid conversion) than the Ni/CeO2ZrO2 catalysts (62% acetic acid conversion) at a low temperature (550 °C). Interaction between Ni/CeO2ZrO2 and silica layer was proved to be a crucial role on enhancing of catalytic activities. Further characterization (XPS, H2-TPR) indicates this interaction facilitates the steam reforming reaction and raises the selectivity of CO by modifying the surface Ni electronic structure. In addition, the coated catalyst also exhibited a good stability and no obvious deactivation was detected at 550 °C and 600 °C within 30 h.  相似文献   

16.
Four samples of Zn-hydrotalcite containing different amounts of Co (5, 10, 20, and 30 wt%) have been synthesized and tested in the steam reforming of ethanol. The best results were obtained with the sample containing 20 wt% of Co (20CoHT), with a complete conversion of ethanol and yields to hydrogen close to the equilibrium (73 mol.%). The physicochemical characterization of the samples by DRX, BET area and TPR indicates that the excellent performance exhibited by the sample containing 20 wt% of Co is due to the higher percentage of reduced cobalt and lower crystallite size of metallic cobalt present in this sample (11 nm). Additional studies have been carried out to improve the stability of this catalytic material against deactivation by the incorporation of 1 wt% of La. Stability studies were carried out using an industrial alcoholic waste as feed. Deactivation after 24 h of reaction time was found lower for the catalyst containing La (20CoLaHT), confirming the positive effect of lanthanum on the catalytic stability. The results presented here show that it is possible to prepare a catalyst based on Co supported on Zn-hydrotalcite and promoted with La with improved ethanol conversion, high hydrogen selectivity, and high stability to produce hydrogen by the steam reforming of an industrial alcoholic waste without commercial value.  相似文献   

17.
A kind of oriented linear cutting fiber sintered felt as an innovative catalyst support for methanol steam reforming was proposed. Multiple long copper fibers fabricated by cutting method were arranged in parallel and then sintered together in a mold pressing equipment under the condition of high temperature and protective gas atmosphere. The characteristics of oriented linear cutting fiber sintered felt coated with Cu/Zn/Al/Zr catalyst for methanol steam reforming were experimental investigated under different GHSVs and reaction temperatures. Results indicated that the structure of sintered felt was the key influencing factor for the reaction performances on the condition of low GHSV or reaction temperature whereas the structure of sintered felt showed little influences with high GHSV or reaction temperature. By the analysis of SEM image and ultrasonic vibration testing method, it was found that the coarse surface pattern of cutting fiber could effectively enhance the adhesion intensity between the catalyst and the copper fibers, as well as present relatively large specific surface area in the microchannels. And hence the oriented linear cutting fiber sintered felt present better performances of methanol steam reforming than the oriented linear copper wire sintered felt on the condition of low GHSV or reaction temperature.  相似文献   

18.
This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.  相似文献   

19.
With the aim of producing hydrogen at low cost and with a high conversion efficiency, steam methane reforming (SMR) was carried out under moderate operating conditions in a Pd-based composite membrane reactor packed with a commercial Ru/Al2O3 catalyst. A Pd-based composite membrane with a thickness of 4–5 μm was prepared on a tubular stainless steel support (diameter of 12.7 mm, length of 450 mm) using electroless plating (ELP). The Pd-based composite membrane had a hydrogen permeance of 2.4 × 10?3 mol m?1 s?1 Pa?0.5 and an H2/N2 selectivity of 618 at a temperature of 823 K and a pressure difference of 10.1 kPa. The SMR test was conducted at 823 K with a steam-to-carbon ratio of 3.0 and gas hourly space velocity of 1000 h?1; increasing the pressure difference resulted in enhanced methane conversion, which reached 82% at a pressure difference of 912 kPa. To propose a guideline for membrane design, a process simulation was conducted for conversion enhancement as a function of pressure difference using Aspen HYSYS®. A stability test for SMR was conducted for ~120 h; the methane conversion, hydrogen production rate, and gas composition were monitored. During the SMR test, the carbon monoxide concentration in the total reformed stream was <1%, indicating that a series of water gas shift reactors was not needed in our membrane reactor system.  相似文献   

20.
This paper investigates the hydrogen-rich gas produced from biomass employing an updraft gasifier with a continuous biomass feeder. A porous ceramic reformer was combined with the gasifier for producer gas reforming. The effects of gasifier temperature, equivalence ratio (ER), steam to biomass ratio (S/B), and porous ceramic reforming on the gas characteristic parameters (composition, density, yield, low heating value, and residence time, etc.) were investigated. The results show that hydrogen-rich syngas with a high calorific value was produced, in the range of 8.10–13.40 MJ/Nm3, and the hydrogen yield was in the range of 45.05–135.40 g H2/kg biomass. A higher temperature favors the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 °C, the hydrogen yield increased from 74.84 to 135.4 g H2/kg biomass. The low heating values first increased and then decreased with the increased ER from 0 to 0.3. A steam/biomass ratio of 2.05 was found as the optimum in the all steam gasification runs. The effect of porous ceramic reforming showed the water-soluble tar produced in the porous ceramic reforming, the conversion ratio of total organic carbon (TOC) contents is between 22.61% and 50.23%, and the hydrogen concentration obviously higher than that without porous ceramic reforming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号