首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the heat transfer area and the thermal conductivity of the reactor materials are evaluated with three identical structured reactors having multiple columned-catalyst bed and using three different reactor materials, aluminum alloy, brass and stainless steel. A series of compact methanol reformers are then designed and fabricated with the use of large reactor surface area in catalyst beds and high heat transfer constant to produce hydrogen fuel with 2–4 ppm of CO for the fuel cell (FC) power generation. The same design principle is successfully used for easy scale up of the reactor capacity from 250 L/h to 10,000 L/h. This low CO hydrogen (68–70%) used as the fuel for the fuel cell power generation provides a very competitive cost of hydrogen and electric power, $0.20–0.23/m3 of H2 and $0.196/KWh, respectively.  相似文献   

2.
A MATLAB/Simulink model is constructed of a fuel cell thermoelectric cogeneration system fed by a methanol steam reformer. The major components within the simulation model include the fuel cell stack, the hydrogen and oxygen supply systems, the heat recovery system, and the methanol steam reformer. It is shown that the simulation results for the dynamic response of the fuel cell given a step change in the load are in good qualitative agreement with the experimental results. Moreover, the simulation results show that the proposed thermoelectric cogeneration system has a thermal efficiency of 35%, an electrical efficiency of 45.6%, and a combined heat and power efficiency of 80.6%. The numerical results for the system efficiency deviate by no more than 4.4% from the experimental results. Finally, it is shown both numerically and experimentally that the methanol conversion rate is greater than 99%.  相似文献   

3.
空泡率是汽液两相流动的基本参数之一,而已有过冷沸腾空泡率计算方法研究以高质量流速为主。且大量文献报道现有空泡率模型难以适用于低流速过冷沸腾工况。该文基于低流速过冷沸腾净蒸汽产生点(NVG)理论模型,进一步建立了计算过冷沸腾空泡率的分布拟合模型。在较宽广的压力、质量流速、热流密度和流道尺寸范围内将模型计算结果与现有空泡率实验数据进行了比较,低流速工况下该模型与实验数据符合良好,表明该模型可适用于低流速过冷沸腾工况。  相似文献   

4.
Methanol steam reforming (MSR) has been regarded as a promising hydrogen supply method for proton exchange membrane fuel cell (PEMFC), while the efficiency for hydrogen production and integration method of MSR with PEMFC are two major challenges for commercial applications. Here, we present a highly efficient MSR system for hydrogen production and supply for low temperature PEMFC (LT-PEMFC). The MSR system has a highly compact microreactor, wherein MSR, methanol combustion, and CO selective methanation reactions occur. The CO selective methanation is used to reduce the content of CO concentration to remit the CO poison, then the reformate of MSR system is mixed with air and supply for the LT-PEMFC. Then, experimental tests are conducted to investigate the effects of operating parameters on hydrogen production. A staged supply strategy is proposed, it enables to startup the system within 11.2 min and with methanol consumption of 34.72 g. Results show that the methanol conversion can reach up to 93.0% and system's energy efficiency of 76.2%. After integration with a LT-PEMFC, a maximum 160 W electricity can be generated. The results obtained in this study demonstrated that the developed MSR system can be used to supply hydrogen for LT-PEMFC and able to power mobile device requiring hundreds of watts power consumption.  相似文献   

5.
In this paper catalyst temperature and hydrogen flow rate controls are an area of interest for autothermal reforming (ATR) of diesel fuel to provide continuous and necessary hydrogen flow to the on-board fuel cell vehicle system. ATR control system design is important to ensure proper and stable performance of fuel processor and fuel cell stack. Fast system response is required for varying load changes in the on-board fuel cell system. To cope with control objectives, a combination of PI and PID controllers are proposed to keep the controlled variables on their setpoints. ATR catalyst temperature is controlled with feedback PID controller through variable OCR (oxygen to carbon ratio) manipulation and kept to the setpoint value of 900 °C. Additionally diesel auto-ignition delay time is implemented through fuel flow rate delay to avoid complete oxidation of fuel. Hydrogen flow rate to the fuel cell stack is kept to setpoint of required hydrogen flow rate according to fuel cell load current using PI controller. An integrated dynamic model of fuel processor and fuel cell stack is also developed to check the fuel cell voltage. Product gas composition of 35, 18 and 4% is achieved for hydrogen, nitrogen, and carbon dioxide, respectively. The results show fast response capabilities of fuel processor following the fuel cell load change and successfully fulfills the control objectives.  相似文献   

6.
车用质子交换膜燃料电池发动机系统控制技术现状研究   总被引:5,自引:0,他引:5  
质子交换膜燃料电池(PEMFC)以其高能量密度、工作温度低、无污染排放、结构紧凑等优点被公认为发展前景最好的汽车动力源之一,对车用(PEMFC)发动机系统的氢气/空气供给系统、水/热管理系统、安全系统、压力,温湿度控制系统的技术现状进行了系统分析,对PEMFC发动机的控制理论,如模糊控制、预测控制与应用技术发展方向进行了研究。  相似文献   

7.
A fuel cell-based combined heat and power system using a high temperature proton exchange membrane fuel cell has been modelled. The fuel cell is fed with the outlet hydrogen stream from a methanol steam reforming reactor. In order to provide the necessary heat to this reactor, it was considered the use of a catalytic combustor fed with methanol. The modelling aims to fit the hydrogen production to the demand of the fuel cell to provide 1 kWe, maintaining a CO concentration always lower than 30,000 ppm. A system with 65 cells (45.16 cm2 cell area) stack operating at 150 °C and hydrogen utilization factor = 0.9 (with O2/methanol ratio = 2 at combustor; H2O/methanol ratio = 2 and temperature = 300 °C at reformer) needed a total methanol flow of 23.8 mol h−1 (0.96 L h−1) to reach 1 kWe, with a system power efficiency (LHV basis) ca. 24% and a CHP efficiency over 87%. The ability to recycle the non-converted hydrogen from the fuel cell anode to the combustor and to use the heat produced at the fuel cell for obtaining hot water increased the global energy efficiency.  相似文献   

8.
介绍了质子交换膜燃料电池双极板,着重介绍了质子交换膜燃料电池双极板的选材:金属材料,石墨材料,石墨/树脂复合材料,纤维增强石墨/树脂复合材料,对质子交换膜燃料电池双极板的选材做出了展望。  相似文献   

9.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

10.
This article proposes a mathematical model and develops the numerical simulation of a single stage hydrogen production–separation process during transient behaviour, suited for proton exchange membrane (PEM) fuel cell (FC) applications. Methanol reforming process is performed in a commercial catalytic membrane reactor (CMR), filled with a commercial ZnO–CuO, alumina supported catalyst. The permeate hydrogen is accumulated in a reservoir volume (buffer) connected to the permeate side. This configuration was studied in order to avoid the feed back control of the reactor feeding, even when transient power loads to the cell are applied. By numerical simulation, we verified that the system comprised by the CMR and the PEM, with an appropriate constant reactor feeding flow, is always self-sustaining so that the hydrogen demand by the FC can be satisfied at all power regimes. The achievement of this goal was obtained by redistribution of the hydrogen produced in the reactor between the buffer and the exhaust tail gases. Only the control of two independent variables of the system, such as reactor temperature and pressure, are needed, therefore, the configuration proposed here results in a simplified approach to the control strategy for the entire system. We apply the theoretical analysis to a pilot plant designed and assembled at the University of Rome “La Sapienza”, in order to verify its functional parameters and the theoretical performance of the system before its real operation.  相似文献   

11.
Proton Exchange Membrane Fuel Cells are promising energy converters that allow powering vehicles or buildings in a clean manner. Nevertheless, their performance are affected by faults and irreversible degradation mechanisms that are far from being fully understood. Consequently, during the last decade, researches have been conducted on the diagnostic of faults of this promising converter. Nevertheless, aging was never the subject of a particular attention concerning control. As a result, this paper proposes an aging tolerant control strategy for Proton Exchange Membrane Fuel Cells. It aims at generating the load current reference taking the state of health into account. Moreover, using a model inversion of an Energetic Macroscopic Representation with time-varying parameters, the coherent references of input flows of gas can be calculated. Finally, the paper details a method to identify and predict the maximum power the fuel cell is able to provide at present time based on a Maximum Power Point Tracking algorithm. Also this algorithm aims at forecasting the Remaining Useful Life for a given power reference. This method is validated on a simulation case.  相似文献   

12.
This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system is shown at different reformer temperatures and fuel flows, using the implemented reformer control strategy. The gas quality of the output reformate gas is of HTPEM grade quality, and sufficient for supporting efficient and reliable HTPEM fuel cell operation with CO concentrations of around 1% at the nominal reformer operating temperatures. As expected increasing temperatures also increase the dry gas CO content of the reformate gas and decreases the methanol slip. The hydrogen content of the gas was measured at around 73% with 25% CO2.  相似文献   

13.
In the fuel cell system, hydrogen recirculation subsystem is usually used to increase efficiency of hydrogen usage. While the hydrogen recirculation subsystem is a closed circuit that the water might be accumulated, water separator is used necessarily to separate the water and gas at the anode side. As the poor swirling effect caused by the guide vane in commercial separator, a novel water separator for proton exchange membrane fuel cell system is designed and the flow field characteristics of the separator are gained by computational fluid dynamics. The structure of volute inlet and overflow pipe in the novel separator can enhance the swirling flow and increase the tangential velocity. Based on the results, the separation efficiency and steady performance throughout the flow-rate range can be improved by the novel water separator.  相似文献   

14.
Fuel processors in portable fuel cell systems require high efficiency, stable operation and rapid start-up time. External heating stabilizes operation of the conventional steam reforming system and allows higher hydrogen concentration in the reformate stream. In this study, we utilized a modified fuel processor that introduced a slip stream of air into the process line right before the water gas shift reactor. The air stream rapidly heated the water gas shift reactor to the desired temperature, eliminating initial CO concentration surges in the downstream. CO concentration quickly stabilized at the minimum concentration without surges by rapid preheating of the water gas shift reactor. The modified system reached a steady state within 10 min.  相似文献   

15.
Finding the optimal flow pattern in bipolar plates of a proton exchange membrane is a crucial step for enhancing the performance of the device. This design plays a critical role in fluid mass transport through microporous layers, charge transfer through conductive media, management of the liquid water produced in microchannels, and microporous layers and heat management in fuel cells. This article investigates different types of common flow patterns in bipolar plates while considering a uniform pressure and velocity distribution as well as a uniform distribution of reactants through all the surfaces of the catalyst layer as the design criteria so that there would be a consistent electron production by the catalyst layer. Then, by identifying the important parameters in achieving the best performance of a fuel cell, a microfluidic flow pattern is inspired from the lungs in the human body, and an innovative bipolar plate is suggested, which was not proposed before. Afterwards, numerical simulations were carried out using computational fluid dynamics methods, and the mentioned bipolar plate called lung‐shaped bipolar plate was modeled. Simulations in this research showed that the lung‐shaped microfluidic flow pattern is an appropriate flow pattern to gain maximum power and energy density. In other words, the best polarization curve and power density curve are obtained by using the lung‐shaped bipolar plate in a proton exchange membrane fuel cell compared with previously suggested patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density.  相似文献   

17.
吴伟  陈旺  蒋方明 《新能源进展》2016,4(5):351-357
为了提高质子交换膜燃料电池(PEMFC)水管理,本文借助多相流格子Boltzmann模型(LBM)模拟分析了PEMFC碳纸气体扩散层(GDL)内的气液两相输运过程,主要研究了GDL疏水性对气液两相流的影响。结果表明:液态水流路径不仅受到GDL结构形态的影响,而且受到材料疏水性影响。液态水在疏水性弱的GDL中不仅容易沁入,而且容易在孔隙中达到饱和;相反,在疏水性较强的GDL中,液态水很难突破沁入小尺寸孔隙,而从孔径较大的孔隙流通,从而形成毛细力主导的指进流动。  相似文献   

18.
A pilot PEM Power Plant is described utilizing by-product hydrogen from the electrolysis of brine in the Akzo Nobel chlor-alkali plant at Delfzijl, the Netherlands. The performance of this 70 kW fuel cell unit is reported for a period of five and a half years, starting in April 2007. Results of measurements of cell voltages on PEM fuel cells with different types of Membrane Electrode Assemblies are reported for an operational period of 30,000 h. Stack performance is highly dependent on the MEA it contains, leading to a wide variety in reversible and irreversible voltage decay rates. Best performing MEAs enable stack operation of more than 16,000 h of power generation, with an average voltage decay rate of 2.5 μV/h. The reversible decay is linked to contaminants, primarily at the anode.  相似文献   

19.
This paper studies the optimization method of channel geometries for a proton exchange membrane fuel cell (PEMFC) using a genetic algorithm (GA). The channel and rib widths and channel height are selected as geometry variables. The fuel cell output power is chosen as the cost function for the optimization. In this paper, an in-house genetic algorithm is constructed, and the fuel cell output power is obtained using an interfacing program connected to a commercial computational fluid dynamics (CFD) tool, COMSOL, in a Matlab environment. The 2D PEMFC is used to calculate the performance cost function for computational time and cost. The calculated output power of the PEMFC is delivered to the in-house GA program to check for optimality. After the optimality is checked, the new geometry data is fed back to the COMSOL to calculate the PEMFC output power until the optimization process is finished. Experiments are conducted to support the optimized results using three different channel geometries: channel-to-rib width ratios of 0.5:1, 1:1, and 2:1. A full 3D PEMFC CFD model is constructed using COMSOL to support the 2D CFD optimization results. This paper shows the possibility of applying the geometry optimization process to sophisticated electrochemical reaction systems, such as a PEMFC, using a GA and a commercial CFD tool on the Matlab platform. The geometries and materials can be optimized using this approach to obtain the most efficient performance of an electrochemical system.  相似文献   

20.
符号表m-质量/kg W-质量流量/kg·s-1N-电池个数I-电流/AM-摩尔分子质量F-法拉第常数/kg·mol-1/9.6 487×104C·mol-1R-气体常数/J·(mol·K)-1T-温度/KV-体积/m3A-反应面积/m2nd-电渗透系数Dw-扩散系数/m2·s-1cwa、cwc-膜阳极侧和阴极tm-膜厚度/m侧的水浓度/mol·m-2kp-水力  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号