共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2021,46(77):38175-38190
In this study, hydrogen and carbon nanotubes (CNTs) are simultaneously produced via a synergistic combined process of CO2 methanation (METH) and chemical vapor deposition (CVD) processes using biogas as a feedstock. METH process could upgrade CO2 containing biogas into CH4-rich gas which then decomposed into H2 and forming CNTs over CoMo/MgO catalyst by CVD process. The effects of Ce addition to CoMo/MgO were investigated. Comprehensive characterization confirms that all as-synthesized samples composed of well-aligned multi-walled carbon nanotubes (MWCNTs) with a narrow size distribution. The Ce addition improved CoMo dispersion on MgO, resulting in smaller and uniform CNTs. The small addition of Ce into CoMo/MgO catalyst could enhance the production CNTs yield. The higher Ce addition would, however, result in the CNTs yield decreased, attributed to a high basicity of CeO2 surface and a large coverage of CeO2 on the catalyst surface. The IG/ID increased with increased Ce addition, while the surface area monotonically decreased, attributed to a decrease in defects of nanotubes. In addition, this wisely combined process could result in a remarkable 100%CO2 elimination, while high CH4 conversion of 90% was obtained. The H2 production yield could gain more than 30 vol% with respect to H2 in the feed stream. The H2 yield and purity in the effluent gas stream were approximately 90%. 相似文献
2.
J.L. Pinilla R. UtrillaR.K. Karn I. SuelvesM.J. Lázaro R. MolinerA.B. García J.N. Rouzaud 《International Journal of Hydrogen Energy》2011,36(13):7832-7843
The production of hydrogen and filamentous carbon by means of methane decomposition was investigated in a fixed-bed reactor using iron-based catalysts. The effect of the textural promoter and the addition of Mo as a dopant affects the catalysts performance substantially: iron catalyst prepared with Al2O3 showed slightly higher catalytic performance as compared to those prepared with MgO; Mo addition was found to improve the catalytic performance of the catalyst prepared with MgO, whereas in the catalyst prepared with Al2O3 displayed similar or slightly poorer results. Additionally, the influence of the catalyst reduction temperature, the reaction temperature and the space velocity on the hydrogen yield was thoroughly investigated. The study reveals that iron catalysts allow achieving high methane conversions at operating temperatures higher than 800 °C, yielding simultaneously carbon nanofilaments with interesting properties. Thus, at 900 °C reaction temperature and 1 l g−1cat h−1 space velocity, ca. 93 vol% hydrogen concentration was obtained, which corresponds to a methane conversion of 87%. Additionally, it was found that at temperatures higher than 700 °C, carbon co-product is deposited mainly as multi walled carbon nanotubes. The textural and structural properties of the carbonaceous structures obtained are also presented. 相似文献
3.
《International Journal of Hydrogen Energy》2020,45(38):19420-19430
Formic acid is well-recognized as safe and convenient hydrogen carrier. Development of active and cost-effective catalysts for formic acid to hydrogen conversion is important problem of hydrogen energy field. Herein, we report on new Co catalysts supported on oxidized multi-walled carbon nanotubes (MWCNTs), which demonstrate high efficiency in the gas-phase formic acid decomposition affording molecular hydrogen. Various parameters of the catalysts, Co loading, MWCNTs structure, and nanotubes treatment conditions, have been investigated in terms of their influence on the catalytic properties. The catalysts morphology has been characterized with a set of physicochemical methods. It is found that the catalytic activity of Co particles depends on their electronic state and location on the support. Co species located inside the MWCNTs channels are less active than Co species stabilized on the outer surface. An increase in the content of Co nanoparticles on the MWCNT outer surface leads to a higher catalytic activity. 相似文献
4.
In this paper, the results obtained in the catalytic decomposition of methane in a fixed bed reactor using a NiCuAl catalyst prepared by the fusion method are presented. The influences of reaction temperature and space velocity on hydrogen concentration in the outlet gases, as well as on the properties of the carbon produced, have been investigated. Reaction temperature and the space velocity both increase the reaction rate of methane decomposition, but also cause an increase in the rate of catalyst deactivation. Under the operating conditions used, the carbon product is mainly deposited as nanofibers with textural properties highly correlated with the degree of crystallinity. 相似文献
5.
Simultaneous production of hydrogen and carbon nanomaterials over Ni-loaded ZSM-5 catalysts via catalytic decomposition of methane was investigated. The effects of nickel particle size and reaction temperature on the hydrogen production, catalyst deactivation and the morphologies of the carbon nanotubes were investigated. Two catalyst were prepared: Ni/ZSM-5(300) – predominant size of the Ni particles 30–60 nm and nNi/ZSM-5(300) predominant size of the Ni particles 10–20 nm. 相似文献
6.
Hydrogen production from catalytic methane decomposition (DeCH4) is a simple process to produce high purity hydrogen with no formation of carbon oxides (CO or CO2). However, to completely avoid those emissions, the catalyst must not be regenerated. Therefore, it is necessary to use inexpensive catalysts, which show low deactivation during the process. Use of carbon materials as catalysts fulfils these requirements. 相似文献
7.
Jun Xiong Xinfa Dong Yingchao Dong Xufeng Hao Stuart Hampshire 《International Journal of Hydrogen Energy》2012
Uniformly dispersed Ni catalysts supported on SiO2 wash-coated Ni foams were synthesized by the wet impregnation method and successfully applied for methane catalytic decomposition (MCD) at atmospheric pressure. All the prepared catalysts exhibited high catalytic stability. The effects of reaction temperature, space velocity, Ni loading on the MCD performance and the morphologies of the as-prepared CNTs were investigated. The results show that high reaction temperature, low space velocity, and high Ni loading enhanced the hydrogen concentration in the outlet gases. Additionally, SEM and TEM observations indicate that the size (diameter) distribution of the as-prepared CNTs became broader with increasing reaction temperature and Ni loading, respectively. The uniform nickel-foam-supported CNTs and relatively high concentration of hydrogen were obtained simultaneously at 650 °C and at a weight hourly space velocity of 1 L g−1cat h−1 by the catalyst with 20 wt% Ni. Raman spectroscopy reveals that the uniform MCNTs had a high degree of amorphization. 相似文献
8.
P. Jana V.A. de la Peña O’Shea J.M. Coronado D.P. Serrano 《International Journal of Hydrogen Energy》2012
Hydrogen production by methane decomposition has been studied using different cobalt catalysts obtained by reduction of cobalt oxide precursors synthesized in ethylene glycol and using three different precipitating agents: sodium carbonate, ammonium hydroxide and urea. The physicochemical properties of the catalysts precursors vary with the precipitating agent, which shows a significant influence in their catalytic performance. Thus, the catalysts obtained from precursors precipitated with Na2CO3 or CO(NH2)2 show remarkable catalytic activity at lower temperatures, which in both cases has been assigned to the lower particle size and aggregation degree of the final metallic Co phase. Accordingly, the use of urea as precipitating agent led to the catalyst with the highest H2 production at 600 °C after 12 h of time on stream. Likewise, it is worth mentioning that the catalyst prepared using Na2CO3 shows significant activity in this reaction even at temperatures as low as 400 °C. 相似文献
9.
Jiaofei Wang Lijun Jin Yang Li Mingyi Wang Haoquan Hu 《International Journal of Hydrogen Energy》2018,43(37):17611-17619
The effect of H2 addition on CH4 decomposition over activated carbon (AC) catalyst was investigated. The results show that the addition of H2 to CH4 changes both methane conversion over AC and the properties of carbon deposits produced from methane decomposition. The initial methane conversion declines from 6.6% to 3.3% with the increasing H2 flowrate from 0 to 25 mL/min, while the methane conversion in steady stage increases first and then decreases with the flowrate of H2, and when the H2 flowrate is 10 mL/min, i.e. quarter flowrate of methane, the methane conversion over AC in steady stage is four times more than that without hydrogen addition. It seems that the activity and stability of catalyst are improved by the introduction of H2 to CH4 and the catalyst deactivation is restrained. Filamentous carbon is obtained when H2 is introduced into CH4 reaction gas compared with the agglomerate carbon without H2 addition. The formation of filamentous carbon on the surface of AC and slower decrease rate of surface area and pores volume may cause the stable activity of AC during methane decomposition. 相似文献
10.
Mun-Sing FanAhmad Zuhairi Abdullah Subhash Bhatia 《International Journal of Hydrogen Energy》2011,36(8):4875-4886
Greenhouse gases, carbon dioxide and methane are utilized in the production of hydrogen through carbon dioxide reforming of methane catalyzed by Ni-Co/MgO-ZrO2 catalyst. Design of Experiments (DOE) was used to study the effects of process variables such as, carbon dioxide to methane ratios (1-5), gas hourly space velocity (8400-200,000 mL/g/h), oxygen concentration in the feed (3-8 mol%) and reaction temperature (700-800 °C) over methane conversion and yield of hydrogen. The ANOVA analysis indicated that the effect of each process variable was significant to its respective responses in the proposed quadratic model. The response surface methodology (RSM) was used to find the optimum value of the process variables by maximizing the hydrogen yield in the process model. The optimum space velocity as 145,190 mL/g/h at reaction temperature 749 °C with carbon dioxide to methane ratio of 3 and 7 mol% of oxygen in the feed gave 88 mol% of CH4 conversion and 86 mol% of hydrogen yield, respectively. The experiments were run at the optimum condition gave 87.7 mol% methane conversion and 85.5 mol% of hydrogen yield, which were in good agreement with the simulated values obtained from the model. The catalyst stability and its regeneration characteristics were studied at the optimum condition by monitoring methane conversion and hydrogen yield with time on stream. 相似文献
11.
A. Domínguez B. Fidalgo Y. Fernndez J.J. Pis J.A. Menndez 《International Journal of Hydrogen Energy》2007,32(18):4792-4799
The aim of this work was to combine microwave heating with the use of low-cost granular activated carbon as a catalyst for the production of CO2-free hydrogen by methane decomposition in a fixed bed quartz-tube flow reactor. In order to compare the results achieved, conventional heating was also applied to the catalytic decomposition reaction of methane over the activated carbon. It was found that methane conversions were higher under microwave conditions than with conventional heating when the temperature measured was lower than or equal to . However, when the temperature was increased, the difference between the conversions under microwave and conventional heating was reduced. The influence of volumetric hourly space velocity (VHSV) on the conversion tests using both microwave and conventional heating was also studied. In general, there is a substantial initial conversion, which declines sharply during the first stages of the reaction but tends to stabilise with time. An increase in the VHSV has a negative effect on CH4 conversion, and even more so in the case of microwave heating. Nevertheless, the conversions obtained in the microwave device at the beginning of the experiments are, in general, better than the conversions reported in other works which also use a carbonaceous-based catalyst. Additionally, the formation of carbon nanofibres in one of the microwave experiments is also reported. 相似文献
12.
J.A. Botas D.P. Serrano R. Guil-López P. Pizarro G. Gómez 《International Journal of Hydrogen Energy》2010
Methane decomposition offers an interesting route for the CO2-free hydrogen production. The use of carbon catalysts, in addition to lowering the reaction temperature, presents a number of advantages, such as low cost, possibility of operating under autocatalytic conditions and feasibility of using the produced carbons in non-energy applications. In this work, a novel class of carbonaceous materials, having an ordered mesoporous structure (CMK-3 and CMK-5), has been checked as catalysts for methane decomposition, the results obtained being compared to those corresponding to a carbon black sample (CB-bp) and two activated carbons, presenting micro- (AC-mic) and mesoporosity (AC-mes), respectively. Ordered mesoporous carbons, and especially CMK-5, possess a remarkable activity and stability for the hydrogen production through that reaction. Under both temperature programmed and isothermal experiments, CMK-5 has shown to be a superior catalyst for methane decomposition than the AC-mic and CB-bp materials. Likewise, the catalytic activity of CMK-5 is superior to that of AC-mes in spite of the presence of mesoporosity and a high surface area in the latter. The remarkable stability of the CMK-5 catalyst is demonstrated by the high amount of carbon deposits that can be formed on this sample. This result has been assigned to the growth of the carbon deposits from methane decomposition towards the outer part of the catalyst particles, avoiding the blockage of the uniform mesopores present in CMK-5. Thus, up to 25 g of carbon deposits have been formed per gram of CMK-5, while the latter still retains a significant catalytic activity. 相似文献
13.
Hydrogen, an environment-friendly energy source, is deemed to become strongly in demand over the next decades. In this work, COx-free hydrogen was produced by the thermal catalytic decomposition (TCD) of methane by a carbon catalyst. Deactivated catalysts at four-stage of progressive were characterized by nitrogen sorption and scanning electron microscopy. TCD of methane at 820 and 940 °C was about 13- and 8-folds higher than non-catalytic decomposition, respectively. High temperatures positively affected the kinetics of hydrogen production but negatively influenced the total amount of hydrogen and carbon products. The total pore volume was a good indicator of the total amount of hydrogen product. Catalyst activity was decreased because of the changes in the catalyst's textural properties within three ranges of relative time, that is, 0 to 45, 0.45 to 0.65, and 0.65 to 1. Models for specific surface area and total pore volume as functions of catalyst deactivation kinetics were developed. 相似文献
14.
Megumu Inaba Zhanguo Zhang Koichi Matsuoka Yasushi Soneda 《International Journal of Hydrogen Energy》2021,46(21):11556-11563
Biogas derived from sewage sludge contains CO2, siloxane, and methane. In this study, the effect of coexistence of siloxane on the production of hydrogen and carbon nanofiber by methane decomposition using iron oxide-alumina catalyst was investigated. The catalyst was reduced by heating in a flow of methane. Siloxane addition to methane caused a catalytic activity at lower temperatures, shortened the induction period prior to the activity, and accelerated catalytic deactivation. Thermal decomposition of siloxane can occur at a lower temperature compared to that of methane. Carbon species formed by the siloxane decomposition may have a higher reducibility than methane does. The reactivity may lead to a carbon deposition at a lower temperature. Coexistence of CO2 and siloxane can prolong a catalytic lifetime because CO2 may inhibit the carbon deposition on catalyst to some extent. 相似文献
15.
Seetharamulu Podila Hafedh Driss Sharif F. Zaman Arshid M. Ali Abdulrahim A. Al-Zahrani Muhammad A. Daous Lachezar A. Petrov 《International Journal of Hydrogen Energy》2017,42(38):24213-24221
This work deals with the effect of catalyst preparation method of the mixed Co, Mg and La oxide catalysts on their structure and catalytic properties for ammonia decomposition. Two methods are used for catalysts preparations impregnation and co-precipitation (in air and in pure O2 atmosphere), The Mg/La = 2 molar ratio and 5 wt% of cobalt content was maintained same in all catalysts. The catalyst performance was evaluated in the temperature range 300–550 °C at atmospheric pressure. The prepared catalysts were characterized by BET, XRD, TPR, XPS, CO2-TPD and SEM techniques. No pronounced differences were observed in BET among the catalysts. It was found that the 5CML-OXY (5 wt%Co over MgLa catalyst prepared by co-precipitation method in oxygen atmosphere) has superior activity among the other catalysts. This could be attributed to availability of easily reducible cobalt species determined by TPR studies and enhanced interaction between Mg and La determined by SEM and XPS. The moderate basic site density determined by CO2-TPD results was also increased in 5CML–OXY catalysts compared with other catalysts. These consequences are might be one of the reasons for enhanced activity of 5CML–OXY catalyst compared to other catalysts. Hence catalyst preparation by co-precipitation in oxygen atmosphere is the best method which might be one of the parameters that influenced on catalytic properties of the cobalt on MgOLa2O3 system, for ammonia decomposition. 相似文献
16.
Paulina Rechnia Anna MalaikaBeata Krzyżyńska Mieczysław Kozłowski 《International Journal of Hydrogen Energy》2012
The interest in hydrogen as a potential fuel of the future has stimulated development of new technologies of its production. The main method of hydrogen production is based on the process of steam reforming of methane, but recently increasing attention has been paid to the catalytic decomposition of methane (CDM) whose advantage is its pro-ecological character. This reaction, besides hydrogen, produces also catalytically low-active carbonaceous deposit which settles on the surface of the catalyst and leads to its deactivation. The study reported is an attempt at suppressing the catalyst deactivation by developing a method leading to formation of carbonaceous deposit potentially active in CDM process. For this purpose, it was proposed that the reaction system would contain methane and ethanol. Simultaneous decomposition of these two substances was performed in parallel at three temperatures of 750, 850 or 950 °C. The catalyst was activated carbon obtained from the hazelnut shells. The addition of ethanol was found to have a positive effect on the course of CDM, leading to an increase in the amount of hydrogen produced and to stabilisation of the catalyst activity at a high level. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(32):14432-14452
We introduced a novel combined process of CO2 methanation (METH) and catalytic decomposition of methane (CDM) for simultaneous production of hydrogen (H2) and carbon nanotubes (CNTs) from biogas. In this process, biogas is catalytically upgraded into CH4-rich gas in METH reactor using Ni/CeO2 catalyst, and the obtained CH4-rich gas is subsequently decomposed into H2 and CNTs in CDM reactor over CoMo/MgO catalyst. Among the three different process scenarios proposed, the combined process with a steam condenser equipped between METH and CDM reactors could greatly improve a CNTs productivity. The CNTs production yield increased by more than 2.5-fold, maximizing at 9.08 gCNTs/gCat with a CNTs purity of 90%. The deposited carbon product was characterized as multi-walled carbon nanotubes (MWCNTs) with a surface area of 136.0 m2/g, comparable with commercial CNTs of 199.8 m2/g. The remarkable IG/ID ratio of 2.18 confirms a superior portion of graphitic carbon in the synthesized CNTs upon the commercial CNTs with IG/ID = 0.74. Notably, the CH4 conversion reached 94.5%, while the CO2 conversion achieved 100%, resulting in the H2 yield and H2 purity higher than 90%. This combined process demonstrates a promising route for production of high quality CNTs and high purity H2 with complete CO2 conversion using biogas as abundant renewable energy resources. In addition, the test of raw biogas showed no deactivation of catalyst, justifying the implementation of the developed process for real biogas without purification. 相似文献
18.
J.L. Pinilla R. Utrilla M.J. Lázaro I. Suelves R. Moliner J.M. Palacios 《International Journal of Hydrogen Energy》2009
A novel reactor configuration, a rotary bed reactor (RBR), was used to study at large scale production the Catalytic Decomposition of Methane (CDM) into hydrogen and carbon nanofibers using a nickel–copper catalyst. The results were compared to those obtained in a fluidized bed reactor (FBR) under the same operating conditions. Tests carried out in the RBR provided higher hydrogen yields and more sustainable catalyst performance in comparison to the FBR. Additionally, the effect of the rotation speed and reaction temperature on the performance in the RBR of the nickel–copper catalyst was studied. The textural and structural properties of the carbon nanofibers produced were also studied by means of N2 adsorption, SEM and XRD, and compared to those obtained in the FBR set-up under the same operating conditions. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(28):14383-14395
Nowadays, methane cracking in the presence of an efficient catalyst is one of the most investigating areas aiming hydrogen and nanocarbon synthesis. This research contribution systematically investigated the influence of methane partial pressure (PCH4), decomposition temperature, and weight of Ni/SiO2 nanocatalyst (n-Ni/SiO2) on carbon nanotube (CNT) yield. The optimum reaction condition for optimal methane cracking resulted in maximum CNT yield is derived using Design Expert Software. A series of experiments conducted to develop a quadratic polynomial model for CNT yield using response surface methodology. Surprisingly, the optimum catalyst quantity was the lowest (0.30 g) in the experimented parameter range, which exhibited the highest CNT production at 610 °C temperature and 0.8 atm PCH4. The minimal catalyst quantity for the optimum CNT production, which needs only 0.26% of the total volume of the pilot plant reactor, is a breakthrough finding in methane cracking research. It could help to overcome the reactor blockage limitation issues of the process in large scale applications. Thanks to the uniquely supported n-Ni/SiO2 catalyst prepared via co-precipitation cum modified Stöber method. The fresh and used catalysts investigated using different types of characterization techniques such as XRD, BET, Raman spectra, HRTEM, and FESEM-EDX. Characterization results evidenced the presence of differently structured CNTs formed at optimum reaction conditions. 相似文献
20.
Non-oxidative, catalytic decomposition of hydrocarbons is an alternative, one-step process to produce pure hydrogen with no production of carbon oxides or higher hydrocarbons. Carbon produced from the decomposition reaction, in the form of potentially valuable carbon nanotubes, remains anchored to the active catalyst sites in a fixed bed. To facilitate periodical removal of this carbon from the reactor and to make hydrogen production continuous, a fluidized-bed reactor was envisioned. The hypothesis that the tumbling and inter-particle collisions of bed material would efficiently separate nanotubes anchored to the active catalyst sites of the bed particles was tested and shown to be invalid. However, a switching mode reaction system for the semi-continuous production of hydrogen and carbon nanotubes by periodic removal and replenishment of the catalytic bed material has been successfully demonstrated. 相似文献