首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nanocomposite-carbon layer is coated onto the surface of 316L stainless steel (SS316) using a beam of accelerated C60 ions at low temperature. The coating is composed of textured graphite nanocrystals ranging in size from 1 to 2 nm, with the graphene plane normal to the coating plane; the nanocrystals are separated by amorphous carbon. This orientation of the graphene layer provides low film resistivity in the direction of the substrate normal. Corrosion resistance tests performed in aggressive anodic and cathodic environments of a polymer electrolyte membrane fuel cell (PEMFC) show that the nanocomposite-carbon coated SS316L exhibits better anticorrosion properties than does bare SS316L. The interfacial contact resistance (ICR) of the nanocomposite-carbon coated SS316L is 12 mΩ cm2, which is similar to that of graphite at a compaction force of 150 N cm−2 and lower than a target of ∼20 mΩ cm2. A low value of ICR is maintained even after corrosion tests in aggressive anodic and cathodic environments. The fabricated nanocomposite-carbon coated SS316L exhibits excellent corrosion resistance and low interfacial contact resistance under simulated PEMFC bipolar plate conditions.  相似文献   

2.
The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E−7 A cm−2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm2 that is about one-third of bare SS 316L at 200 N cm−2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.  相似文献   

3.
Carbon film has been deposited on 304 stainless steel (SS304) using close field unbalanced magnetron sputter ion plating (CFUBMSIP) to improve the corrosion resistance and electrical conductivity of SS304 acting as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The corrosion resistance, interfacial contact resistance (ICR), surface morphology and contact angle with water of the bare and carbon-coated SS304 are investigated. The carbon-coated SS304 shows good corrosion resistance in the simulated cathode and anode PEMFC environment. The ICR between the carbon-coated SS304 and the carbon paper is 8.28-2.59 mΩ cm2 under compaction forces between 75 and 360 N cm−2. The contact angle of the carbon-coated SS304 with water is 88.6°, which is beneficial to water management in the fuel cell stack. These results indicate that the carbon-coated SS304 exhibits high corrosion resistance, low ICR and hydrophobicity and is a promising candidate for bipolar plates.  相似文献   

4.
We report in this paper a simple method of coating very thin graphene film on titanium substrate, affording it markedly enhanced resistance to corrosion and much decreased electrical contact resistance under the environment of proton exchange membrane fuel cells (PEMFC). The graphene film is formed by electrodepositing graphene oxide (GO) on Ti sheet via normal pulse voltammetry, followed by reducing the deposited GO at 500 °C in hydrogen atmosphere. The resultant graphene film, with a thickness of only around 50 nm, evenly covers and covalently bonds to the Ti sheet, as revealed by SEM, Raman and XPS. Both potentiodynamic and potentiostatic tests of the graphene coated Ti (G/Ti) sample are conducted under simulated chemical environment and electrode potentials of PEMFC. Under all the circumstances, the corrosion currents of G/Ti sheet are in the order of 10−7 A/cm2, significantly less than that of bare Ti sheet. Moreover, the coated graphene film on Ti sheet leads to a much lower and more stable interfacial contact resistance (ICR) of around 4 mΩ cm2. These results mean that the G/Ti sheet meets the U.S. DOE target of 2020 for PEMFC bipolar plates (BP) in terms of both the corrosion and electrical resistance. Therefore, the G/Ti sheet appears to be a very promising BP material in PEMFC.  相似文献   

5.
Aluminum bipolar plates offer good mechanical performance and availability for mass production while allow up to 65% lighter than stainless steel. To improve the corrosion resistance and surface electrical conductivity of aluminum bipolar plates, several coatings, including TiN, CrN, C, C/TiN and C/CrN, are deposited on aluminum alloy 5052 (AA-5052) by close field unbalanced magnetron sputter ion plating. Scanning electron microscope (SEM) results show that the coatings containing carbon layer are denser than TiN and CrN. Although the potentiodynamic test results show improved corrosion resistance by all the coatings, the potentiostatic test results reveal different stability of these coatings in PEMFC environments. Comparing the SEM images of these coatings after potentiostatic test, C/CrN multilayer coating exhibits the best stability. C/CrN multilayer coated AA-5052 has the lowest metal ion concentration after potentiostatic test, being 11.12 ppm and 1.29 ppm in PEMFC cathodic and anodic environments, respectively. Furthermore, the interfacial contact resistance (ICR) of the bare AA-5052 is decreased from 61.58 mΩ-cm2 to 4.08 mΩ-cm2 by C/CrN multilayer coating at the compaction force of 150 N-cm−2. Therefore, C/CrN multilayer coating is a good choice for surface modification of aluminum bipolar plate.  相似文献   

6.
The effect of RuO2 electrodeposition on ferritic stainless steel as a bipolar plate is evaluated in terms of the surface morphology, interfacial contact resistance (ICR), potentiostatic polarization, contact angle, and X-ray photoelectron spectroscopy. The surface morphology of deposited RuO2 is greatly stabilized by addition of HNO3 in 10 mM RuCl3·xH2O solution. The RuO2-deposition on stainless steel shows a high contact angle indicating the high surface energy and hydrophobic characteristics. The ICR measurement indicates that the deposition of conductive RuO2 on stainless steel is very effective in decreasing ICR value. Moreover, after potentiostatic polarization, the ICR value shows only 2.4 and 2.2 mΩ cm2 at 150 N/cm2 under air and H2 purged environments, respectively. In electrochemical test, even though the current density of RuO2-deposited stainless steel is slightly higher than that of bare stainless steel, it is acceptable value for the relevant DOE 2015 target for metallic bipolar plates (less than 1 μA/cm2). Because the RuO2-deposition on stainless steel shows a low ICR value and good corrosion resistance and high contact angle, the RuO2-deposition is a sufficiently feasible method for the bipolar plate material of PEMFC.  相似文献   

7.
The current work mainly investigates the corrosion resistance and conductivity of TiN layer on Ti–6Al–4V with liquid phase plasma electrolytic nitridation for PEMFC bipolar plate (BP). The X-ray diffraction (XRD) results show that TiN phase presents in the nitriding samples. The surface morphology analysis indicates that higher CH4NO2 concentration tends to form more compact structure. The potentiodynamic polarization test indicates that sample N-600 prepared by 600 g/L CH4NO2 concentration possesses the lowest corrosion current density of 0.57 μA cm−2 in the simulated PEMFC cathode potential (+0.6 VSCE), which completely satisfies the DOE 2020 technical targets. Meanwhile, sample N-600 also exhibits the highest corrosion resistance and stability in the potentiostatic polarization, electrochemical impedance spectroscopy (EIS) and high potential (+1.6 VSCE) polarization test. Interfacial contact resistance (ICR) results show that sample N-600 possesses the lowest ICR value of 6 ± 0.4 mΩ cm2, which fully meets the DOE 2020 requirements.  相似文献   

8.
It is critical to develop a coating with sufficient comprehensive performances and efficient preparation strategy for the commercial application of metallic bipolar plate in proton exchange membrane full cell (PEMFC). In this work, chromium nitride coatings prepared by a rapid multi-arc ion plating (MIP) process with various nano thicknesses are investigated in the simulated PEMFC cathodic environments. Both the corrosion resistance and conductivity of the coatings increase with the growth of the coating thickness, which can be attributed to the increasing equivalent diameter, density, and area fraction of the droplets formed on the coating surfaces. The chromium nitride coating with a thickness of approximately 1.0 μm has the lowest I0.6 V (0.594 μA cm?2) and interfacial contact resistance (ICR, 6.54 mΩ cm2@1.4 MPa after corrosion test), achieving the 2025 technical targets proposed by the US Department of Energy for bipolar plates. This work shows that rapid preparation by MIP within 12 min is a potential strategy for chromium nitride coated titanium bipolar plates of PEMFCs at industrial scale.  相似文献   

9.
10.
The influence of bias voltage on surface microstructure of TiN films deposited on Ti substrate by multi-arc ion plating was systematically investigated. The TiN films were characterized using X-ray diffraction, scanning electron microscopy and atomic force microscopy. The corrosion resistance was tested by potentiodynamic polarization and electrochemical impedance spectroscopy at 70–80 °C in the simulated PEMFC cathode environment. The results show that the surface microstructure of TiN film depends strongly on the bias voltages. At the bias voltage of −100 V, TiN film shows the optimum surface microstructure with the lowest surface roughness Rz of 0.039 μm tested by AFM and relatively high compactness. The optimized TiN film exhibits excellent corrosion resistance with corrosion current density of 0.87 μA/cm2 in a 0.5 M H2SO4 + 2 ppm HF solution at 80 °C with air and a low interfacial contact resistance (ICR) value of 3.0 mΩ cm2 at a compaction force of 140 N/cm2. These results support TiN as a promising coating material for Ti bipolar plates.  相似文献   

11.
A molybdenum nitride diffusion coating has been prepared on the surface of AISI 304 stainless steel (304 SS) by plasma surface diffusion alloying method as bipolar plate for proton exchange membrane fuel cell (PEMFC). X-ray diffraction data shows that the molybdenum nitride is face-centered-cubic Mo2N phase. The results of scanning electron microscopy in combination with energy-dispersive X-ray analysis spectrometer indicate that the as-prepared molybdenum nitride diffusion coating consists of a ∼3.5 μm surface layer (molybdenum nitride) and a ∼0.5 μm subsurface layer (Mo and N solid solution). In addition, the average contact angle with water for modified 304 SS is 91°, demonstrating the better hydrophobic property of the surface modified 304 SS as compared to the untreated ones with average contact angle of 68°. Potentiodynamic and potentiostatic testing in simulated PEFMC operating conditions (0.05 M H2SO4 + 2 ppm F solution at 70 °C purged with either hydrogen or air) as well as interfacial contact resistance (ICR) measurement imply that the molybdenum nitride modified 304 SS exhibits improved corrosion resistance and promising ICR.  相似文献   

12.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

13.
Dynamic potentials of polymer electrolyte membrane fuel cells (PEMFCs) lead to the corrosion of metal bipolar plates and significantly increase their interfacial contact resistance (ICR). Herein, two nano-thin C/Ti coatings with different thicknesses are prepared on SS316L (C/Ti/SS) and examined under three types of polarization potential modes. The C100Ti60 coating has improved corrosion resistance than C20Ti140 coating. The C100Ti60 coating exhibits a low ICR of 2.67 mΩ cm2 and a small corrosion rate of 1.47 μA/cm2, highlighting the high electrical conductivity and corrosion resistance. Moreover, C100Ti60/SS achieves a slight degradation of ICR after polarization at 0.67 V and cyclic polarization between 0.43 and 0.73 V. However, the high potential of 1.43 V induces severe delamination of C layer, resulting in a remarkable increase of ICR. Analysis suggests that the Ti layer improves the oxidation resistance and the C layer could provide effective protection when the potential is below 1.13 V.  相似文献   

14.
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10−8 A cm−2, and the smallest interfacial contact resistance, 5.9 mΩ cm2, at 140 N cm−2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.  相似文献   

15.
AISI446 steel has been electrochemically nitrided in 0.1 M HNO3 + 0.5 M KNO3 solution at room temperature. XPS analysis revealed surface NH3 and a deeper nitride layer. The surface layer of the stainless steel modified by electrochemical nitridation was thus composed of a nitrogen-incorporated oxide film. The nitrided steel showed very low interfacial contact resistance (ca. 18 mΩ cm2 at 140 N/cm2) and excellent corrosion resistance in simulated PEMFC environments. Electrochemical nitridation provides an economic way to modify the stainless steel’s surface, and is very promising for application to fuel cell bipolar plates.  相似文献   

16.
Low temperature plasma nitriding is developed to meet the requirements for corrosion resistance and interfacial contact resistance (ICR) of stainless steel 304L as the bipolar plate for PEMFC. A dense and supersaturated‐nitrogen nitrided layer has formed on the surface of the stainless steel 304L. Electrochemical behavior for the untreated and plasma‐nitrided 304L was measured in H2SO4 (pH=1–5)+2 ppm F? simulating PEMFC environment, and the ICR was evaluated before and after corrosion tests. The experimental results have shown that the ICR for the plasma nitrided 304L is lower than the requirement of U.S. DOE (<10 mΩ cm2 to 2010). Corrosion resistance and the ICR at the compaction force of 150–200 N cm?2 increase with increasing pH value for the untreated and plasma‐nitrided 304L. The passive current densities for the untreated and plasma‐nitrided 304L are all lower than 16 µA cm?2. The ICR between passive film and carbon paper are increased markedly because of passive film formed on the surface of both studied 304L. However, the passive current density and the ICR are lower for the plasma nitrided 304L than those for the untreated one at the given pH value, which results from the different composition of the stable passive film formed on the surface. The low temperature plasma nitriding provides a promising method for 304L using as bipolar plate for PEMFC. Further research is needed to evaluate the long‐term stability of passive film and the performance of single fuel cell. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Proton exchange membrane water electrolysis (PEMWE) is a promising technology to be incorporated in the production of green hydrogen, but one of its limitation to market penetration is the cost of bipolar plates (BPP).Aiming to reduce the cost of PEMWE stack, different surface engineered coating systems based on CrN/TiN, Ti/TiN, Ti and TiN deposited by physical vapor deposition on SS 316L, SS 904L and SS 321 were tested, as potential cost effective solutions to be implemented on bipolar plates. A corrosion evaluation has been carried out in anodic PEMWE conditions in order to determine the best substrate/coating combination for bipolar plates. Ti/TiN multi-layered coating on SS 321 shown the best performance with ?0.02% weight loss, current at 2 VSHE to 436 μA cm?2 and ICR after corrosion test to 9.9 mΩ cm2.  相似文献   

18.
Superior corrosion resistance and high electrical conductivity are crucial to the metallic bipolar plates towards a wider application in proton exchange membrane fuel cells. In this work, molybdenum carbide coatings are deposited in different thicknesses onto the surface of 316 L stainless steel by magnetron sputtering, and their feasibility as bipolar plates is investigated. The microstructure characterization confirms a homogenous, compact and defectless surface for the coatings. The anti-corrosion performance improves with the increase of the coating thickness by careful analysis of the potentiodynamic and potentiostatic data. With the adoption of a thin chromium transition layer and coating of a ∼1052 nm thick molybdenum carbide, an excellent corrosion current density of 0.23 μA cm−2 is achieved, being approximately 3 orders of magnitude lower than that of the bare stainless steel. The coated samples also show a low interfacial contact resistance down to 6.5 mΩ cm2 in contrast to 60 mΩ cm2 for the uncoated ones. Additionally, the hydrophobic property of the coatings’ surface is beneficial for the removal of liquid water during fuel cell operation. The results suggest that the molybdenum carbide coated stainless steel is a promising candidate for the bipolar plates.  相似文献   

19.
Chromium electroplated AISI 316L stainless steel was nitrided using inductively coupled plasma (ICP) for application in the bipolar plate of a polymer electrolyte membrane fuel cell (PEMFC). A continuous and thin chromium nitride layer was formed at the surface of the samples after ICP nitriding for 2 h at 400 °C. The interfacial contact resistance (ICR) and corrosion resistance in simulated PEMFC operating conditions were higher than the required values, while they varied with the applied dc bias voltage during the nitriding process. The ICR value decreased with an increase in bias voltage. Potentiodynamic polarization measurements showed that all of the nitrided samples had excellent corrosion resistance with a current density of ∼10−7 A cm−2 at the cathode. It was also found that the oxygen content at the surface was not increased after the corrosion test. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), and Auger electron spectroscopy (AES) were used to analyze the effect of plasma nitriding.  相似文献   

20.
The dependence of interfacial contact resistance (ICR) on contact materials between cathode and interconnect is systematically studied under both isothermal oxidation and thermal cycling conditions. Three kinds of cathode current-collecting layer (CCCL) are used, (La,Sr) (Co,Fe)O3 (LSCF), LSCF+10%Ag, and Ag, and tested in a SUS430/CCCL/SUS430 sandwich structure to simulate the actual operation of the solid oxide fuel cells (SOFCs). Experimental results show that the ICR of LSCF+10%Ag exhibits the smallest value, in comparison with the specimens with LSCF and Ag paste, as well as the sample without a CCCL. For LSCF+10%Ag contact, the ICR increases from 0.0069 mΩ cm2 to 3.74 mΩ cm2 under an isothermal condition for 150 h, then increases from 3.74 mΩ cm2 to 10.79 mΩ cm2 after 15 thermal cycles. This work provides information for the understanding of possible mechanisms of performance degradation of SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号