首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabrication of an electrocatalyst with remarkable electrocatalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for the production of hydrogen energy. In this study, Ni–Co–W alloy urchin-like nanostructures were fabricated by binder-free and cost-effective electrochemical deposition method at different applied current densities and HER and OER electrocatalytic activity was studied. The results of this study showed that the microstructure and morphology are strongly influenced by the electrochemical deposition parameters and the best electrocatalytic properties are obtained at the electrode created at the 20 mA.cm−2applied current density. The optimum electrode requires −66 mV and 264 mV, respectively, for OER and HER reactions for delivering the 10 mA cm−2 current density. The optimum electrode also showed negligible potential change after 10 h electrolysis at 100 mA cm−2, which means remarkable electrocatalytic stability. In addition, when this electrode used as a for full water splitting, it required only 1.58 V to create a current density of 10 mA cm−2. Such excellent electrocatalytic activity and stability can be related to the high electrochemical active surface area, being binder-free, high intrinsic electrocatalytic activity and hydrophilicity. This study introduces a simple and cost-effective method for fabricating of effective electrodes with high electrocatalytic activity.  相似文献   

2.
The development of bifunctional catalysts that can be applied to both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is widely regarded as a key factor in the production of sustainable hydrogen fuel by electrochemical water splitting. In this work, we present a high-performance electrocatalyst based on nickel-cobalt metal-organic frameworks for overall water splitting. The as-obtained catalyst shows low overpotential to reaches the current density of 10 mA cm−2 with 249 mV for OER and 143 mV for HER in alkaline media, respectively. More importantly, when the electrolyzer was assembled with the as-prepared catalyst as anode and cathode simultaneously, it demonstrates excellent activity just applies a potential of 1.68 V to achieve 10 mA cm−2 current density for overall water splitting.  相似文献   

3.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

4.
Hybrid electrodes have recently been investigated as attractive alternatives to noble-metal-based electrocatalysts for hydrogen production by water splitting. Herein, we propose an electrode composed of an oxidized carbon cloth with an electrodeposited bimetallic Co/Fe-based film. By optimizing the electrodeposition conditions and applying electrochemically activated carbon cloth as a substrate, one can prepare a free-standing noble-metal-free electrocatalytic electrode with high bifunctional electrocatalytic activity in hydrogen and oxygen evolution from alkaline solution. The developed Fe0.25Co0.75 electrode requires overpotentials of 245 mV for HER and 360 mV for OER at high current densities of −100 and 100 mA cm−2, respectively. Furthermore, its overall synthesis time from commercially available raw materials is only approximately 20 min. The electrode material was used as both a cathode and an anode in the model electrolyzer, which can deliver 10 mA cm−2 of current density at 1.66 V without loss of activity during 100 h of performance.  相似文献   

5.
The development of non-precious metal-based highly active bi-functional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is critical factor for making water electrolysis a viable process for large-scale industrial applications. In this study, bi-functional water splitting electrocatalysts in the form of nickel-sulfide/nickel nanoparticles integrated into a three-dimensional N-doped porous carbon matrix, are prepared using NaCl as a porous structure-forming template. Microstructures of the catalytic materials are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption analysis. The most active catalyst synthesized in this study exhibits a low HER overpotential of 70 mV at 10 mA cm−2 and a low Tafel slope of 45 mV dec−1. In OER, the optimized sample performs better than a state-of-the-art RuO2 catalyst and produces an overpotential of 337 mV at 10 mA cm−2, lower than that of RuO2. The newly obtained materials are also used as HER/OER electrocatalysts in a specially assembled two-electrode water splitting cell. The cell demonstrates high activity and good stability in overall water splitting.  相似文献   

6.
The synthesis of high performance and economical electrocatalysts in the process of overall water splitting is very important for the production of hydrogen energy and has become one of the most important challenges. Here, various Ni, Ni–Fe, Ni–Mn nanosheets and Ni–Fe–Mn ternary nanosheets were created using cost-effective, versatile and binder-free electrochemical deposition methods, and the electrocatalytic activity of various electrodes for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were investigated in an alkaline environment. Due to the high electrochemical active surface area due to the fabrication of nanosheets, the synergistic effect between different elements on the electronic structure, the high wettability due to the formation of nanosheets and the quick detachment of formed gasses from the electrode, the Ni–Fe–Mn nanosheets electrode showed excellent electrocatalytic activity. In order to deliver the 10 mA cm−2 current density in HER and OER processes, this electrode required values of 64 mV and 230 mV overpotential, respectively. Also, the stability test showed that after 10 h of electrolysis at a current density of 100 mA cm−2, the overpotential changes was very small (less than 4%), indicating that the electrode was excellent electrostatic stability. Also, when using as a bi-functional electrode in the full water splitting system, it only needed a cell voltage of 1528 V to deliver a current of 10 mA cm−2. The results of this study indicate a new strategy for the synthesis of active and stable electrocatalysts.  相似文献   

7.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

8.
To achieve high activity and stability for both hydrogen and oxygen evolution reactions through the non-precious-metal based electrocatalysts is still facing the great challenge. Herein, we demonstrate a facile strategy to prepare CoP nanoparticles (NPs) loaded on N, P dual-doped carbon (NPC) electrocatalysts with high concentration N and P dopants through a pyrolysis-deposition-phosphidation process. The great bifunctional electrocatalytic activity for both HER (the overpotential of 98 mV and 86 mV at 10 mA cm−2 in both 0.5 M H2SO4 and 1 M KOH electrolytes, respectively) and OER (the overpotential of 300 mV at 10  mA cm−2 in 1 M KOH electrolyte) were achieved. When CoP@NPC hybrid was used as two electrodes in the 1 M KOH electrolyte system for overall water splitting, the needed cell potential for achieving the current density of 10 mA cm−2 is 1.6 V, and it also showed superior stability for HER and OER after 10 h’ test with almost negligible decay. Experimental results revealed that the P atoms in CoP were the active sites for HER and the CoP@NPC hybrid showed excellent bifunctional electrocatalytic properties due to the synergistic effects between the high catalytic activity of CoP NPs and NPC, in which the doping of N and P in carbon led to a stronger polarization between Co and P in CoP, promoting the charge transfer from Co to P in CoP, enhancing the catalytic activity of P sites and Co sites in CoP for HER and OER, respectively. Specifically, the improvements could result from the changed charge state, the increased active specific surface area, and the facilitated reaction kinetics by N, P co-doping and admixture. This work provides a high-efficient, low-cost and stable electrocatalyst for overall water splitting, and throws light on rational designing high performance electrocatalysts.  相似文献   

9.
Transition metal catalysts were supposed to be the most likely substitute for commercial noble metal catalysts, and the development of highly active and long-term catalyst for water splitting are the future trend. Herein, Ni rectangular nitrogen doped carbon nanorods@Fe–Co nanocubes (Ni-CNRs@Fe–Co cubes) were fabricated via a facile template-free method. This simple strategy not only realizes the structure tailoring, but also achieves high-quality nitrogen-doping. Specifically, nickel dimethylglyoxime [Ni(dmg)2] with rectangular rodlike structure was firstly synthesized by solution method, then metal-organic frameworks Fe–Co nanocube with different contents were loaded on rectangular carbon nanorods with polydopamine as the locating and the connecting agent, and finally Ni-CNRs@xFe-Co cubes were obtained by a one-step calcination. A series of electrochemical tests were researched on materials with different metal contents in the 1 M KOH solution. The Ni-CNRs@Fe–Co cubes show excellent electrocatalytic activity in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). For HER and OER, the Tafel slopes were 83.3 mV dec−1 and 71 mV dec−1, the onset potential were −167 mV and 1.62 V, and reached the current densities of 10 mA cm−2, the overpotential just needed 196 mV and 433 mV, respectively. This novel synthetic strategy will provide a template-free way for cheap electrocatalysts of non-precious metal for OER and HER.  相似文献   

10.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

11.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

12.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

13.
The development of highly active and low-cost catalysts for hydrogen evolution reaction (HER) is significant for the development of clean and renewable energy research. Owing to the low H adsorption free energy, molybdenum disulfide (MoS2) is regarded as a promising candidate for HER, but it shows low activity for oxygen evolution reaction (OER). Herein, graphene-supported cobalt-doped ultrathin molybdenum disulfide (Co–MoS2/rGO) was synthesized via a one-pot hydrothermal method. The obtained hybrids modified electrode exhibits a high HER catalytic activity with a low overpotential of 147 mV at the current density of 10 mA cm−2, a small Tafel slope of 49.5 mV dec−1, as well as good electrochemical stability in acidic electrolyte. Meanwhile, the catalyst shows remarkable OER activity with a low overpotential of 347 mV at 10 mA cm−2. The superior activity is ascribed not only to the high conductivity originated from the reduced graphene, but also to the synergistic effect between MoS2 and cobalt.  相似文献   

14.
Herein, the vertical thin nickel–iron layered double hydroxide nanosheets grown on the hills-like nickel framework (NiFe LDH/Ni@NF) are employed for the oxygen evolution reaction (OER), securing at the low overpotentials of 197 and 270 mV to obtain the current densities of 20 and 100 mA cm−2, respectively, with a Tafel slope of 73.34 mV dec−1. The electrodeposited nickel film induces the NiFe LDH nanosheets grow vertically and thinly. As well, the nickel abundant interfaces and inner space makes this catalyst effective for OER. It was further served as the OER electrode in a water splitting system coupled the Pt/C cathode, and a cell voltage was at 1.52 and 1.67 V to achieve the current density of 10 mA cm−2 and 50 mA cm−2. In addition, the water electrolyzer can suffer a long time of 24 h at 50 mA cm−2, showing the feasibility in a practical unbiased alkaline water splitting system.  相似文献   

15.
Developing an effective and low-cost bifunctional electrocatalyst for both OER and HER to achieve overall water splitting is remaining a challenge to meet the needs of sustainable development. Herein, an electroless plating method was employed to autogenous growth of ultrathin Ni–Fe2B nanosheet arrays on nickel foam (NF), in which the whole liquid phase reduction reaction took no more than 20 min and did not require any other treatments such as calcination. In 1.0 M KOH electrolyte, the resulted Ni–Fe2B ultrathin nanosheet displayed a low overpotential of 250 mV for OER and 115 mV for HER to deliver a current density of 10 mA cm?2, and both OER and HER activities remained stable after 26 h stability testing. Further, the couple electrodes composed of Ni–Fe2B could afford a current density of 10 mA cm?2 towards overall water splitting at a cell voltage of 1.64 V in 1.0 M KOH and along with excellent stability for 26 h. The outstanding electrocatalytic activities can be attributed to the synergistic effect of electron-coupling across Ni and Fe atoms and active sites exposed by large surface area. The effective combination of low cost and high electrocatalytic activity brings about a promising prospect for Ni–Fe2B nanosheet arrays in the field of overall water splitting.  相似文献   

16.
Rationally designing an efficient and cost-effective bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a primary matter in applying electrocatalytic water splitting. Herein, a self-supported FeNiCo-based amorphous catalyst with a hierarchical micro/nanoporous structure is fabricated by dealloying an amorphous/nanocrystalline precursor. The amorphous nanoporous framework enables the prepared electrocatalyst to afford fast reaction kinetics, abundant active sites, and enhanced electrochemical active surface areas (ECSAs). Such structural advantages and the synergistic effects of the ternary transition metals contribute to a dramatic catalytic activity of this electrocatalyst under alkaline conditions, which delivers the current density of 10 mA cm−2 at a low overpotential of 134 mV for HER and 206 mV for OER, respectively. Furthermore, a full electrolysis apparatus constructed by the self-supported hierarchical micro/nanoporous FeNiCo-based amorphous electrocatalyst as both cathode and anode acquires a dramatically low voltage of 1.58 V operating at 10 mA cm−2 along with stability for more than 24 h for overall water splitting.  相似文献   

17.
Designing high-efficiency catalysts for overall water splitting is critical to reduce the cost of hydrogen fuel as a clean and renewable energy source in future society. In this work, a Mo-, P-codoped NiFeSe was successfully synthesized on nickel foam (NF) by one-step electrodeposition. Through the doping strategy, the conductivity can be well promoted, and the production of nanosheets on the catalyst surface and active phases during hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) provided much more active sites, which leaded to efficient HER/OER performances of as-synthesized Mo-, P-codoped NiFeSe catalysts, i.e., a low overpotential of 100 mV/200 mV at current density of 10 mA cm−2 in 1.0 M KOH with stability of 95 h/60 h, respectively. It only required 1.53 V to deliver a current density of 10 mA cm−2 in overall water splitting and maintained outstanding durability for 100 h. This work is beneficial to future design of high efficient and low-cost bifunctional catalysts for overall water splitting.  相似文献   

18.
Highly active and stable non-precious metal dual-functional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are very important for the industrialization of water electrolysis. Herein, a three-dimensional (3D) porous CoS2/FeS-MOF with adjustable Co/Fe molar ratio are in-stiu grown on a nickel foam (NF) to get a binder-free electrocatalyst electrode for HER and OER (CoS2/FeS-MOF@NF). It should be emphasized that the MOFs precursor forms abundant heterogeneous interfaces through in-situ sulfidation. Moreover, the open skeleton and ordered porous structure of MOFs will not be destroyed due to the low temperature. The redistribution of electrons at the heterogeneous interfaces will produce more catalytic active centers, providing more active sites for reactant molecules or intermediates, thus availably promoting the electrocatalytic activity of the composite. Therefore, the optimized catalyst CoS2/FeS-MOF@NF-1 displays high OER activity. The overpotential is only 136 mV at 10 mA cm?2. At the same time, the CoS2/FeS-MOF@NF-1 also shows good HER catalytic activity. Therefore, the assembled corresponding symmetric electrolyzer CoS2/FeS-MOF@NF-1||CoS2/FeS-MOF@NF-1 achieves a low cell voltage of 1.5 V at 10 mA cm?2 with long time stability for 24 h. This work provides a simple and convenient strategy for the synthesis of transition metal sulfides dual-function electrocatalysts.  相似文献   

19.
Water splitting is widely regarded as one of the promising technologies for hydrogen fuel production and foreshadowed to assist in meeting the global energy demand as a sustainable and reliable energy technology. In this regard, we report on the facile chemical synthesis of hybrid Cobalt (Co) and Nickel (Ni) oxide nanostructure for low-cost bi-functional electrocatalytic water splitting applications. Their crystalline characteristics and chemical structure were studied using X-ray diffraction and Fourier-Transform infrared (FT-IR) spectrum. The nanostructure morphology was investigated by scanning and high-resolution transmission electron microscopy (SEM/HRTEM). The 2+ and 3+ valence state of Co and Ni metal ions was identified using X-ray photoelectron spectroscopy (XPS). The hybrid oxide electrocatalyst was found to display an excellent oxygen/hydrogen evolution reaction (OER/HER activity) in alkaline condition. The realization of random heterojunction configuration across the hybrid nanostructures was found to offer an improved conductivity and enhanced charge transfer capability to promote the gas evolution kinetics. Overpotential value of 203 and 378 mV was registered from the respective OER and HER polarization curves (for current density of ±10 mA cm−2). Tafel slope of 87 mV/dec for OER and 90 mV/dec for HER along with the long-term stability results authenticated the anodic/cathodic characteristics of hybrid oxides for overall water splitting applications.  相似文献   

20.
Water electrolysis is an energy conversion technology to provide green and clean hydrogen energy. Developing a high-efficient and durable electrocatalyst is a critical material for water electrolysis. Therefore, we synthesize a series of iron-doped metal-organic frameworks (MOFs) by a facile one-pot hydrothermal method. In the conventional three-electrode-cell, the Co/Fe (1:1)-MOF catalyst exhibits an overpotential of 317 mV at a current density of 10 mA cm−2 in the oxygen evolution reaction (OER). Furthermore, the electrolysis performance of Co/Fe (1:1)-MOF catalyst is further evaluated in a home-made anion-exchange-membrane water electrolysis cell. With the Co/Fe (1:1)-MOF as the OER catalyst and commercial Pt/C as the hydrogen-evolution-reaction catalyst, the cell presents an overpotential of 490 mV at a large current density of 500 mA cm−2, which is superior to the benchmark cell with commercial IrO2 as the OER catalyst in the alkaline media. Theoretical calculation demonstrates that the introduction of Fe dopant into MOFs significantly reduces the binding energy of 1O and 1OOH intermedium during the OER progress. Consequently, the electrocatalytic activity is increased, which is perfectly consistent with the experimental results. This work suggests that the iron-doped MOFs structure significantly improves the electrocatalytic activity and provides a facile strategy to produce hydrogen at a large current density for industrial water electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号