首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel modified titanium dioxide nanotubes (TiO2-NTs/Ni) and TiO2-NTs electrodes are investigated for hydrogen evolution reaction (HER). To obtain large surface area, TiO2-NTs are prepared by using anodization method at a constant voltage of 60 V for various anodization times (30 min, 1 h and 2 h). Small amount of Ni is successfully deposited over TiO2-NTs via electrodeposition method. Hydrogen evolution activities of TiO2-NTs/Ni and TiO2-NTs are investigated in 1 M KOH solution at room temperature. Characterizations of prepared nano-structured electrodes are analyzed with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV) and electrochemical-activities are determined through cathodic current-potential curves and electrochemical impedance spectroscopy (EIS). Hydrogen volumes produced from prepared electrodes are also measured under constant voltage of 3 V for 30 min. Obtained results showed that hydrogen evolution activity increased with the modification of TiO2-NTs by nickel. High current density at specific overpotentials, hydrogen volume and small polarization resistance are obtained on TiO2-NTs/Ni. High stability and durability are also obtained on this electrode. So, TiO2-NTs/Ni as an electrocatalyst is suggested to use in water electrolysis systems.  相似文献   

2.
Recently, the replacement of expensive platinum-based catalytic materials with non-precious metal materials to electrolyze water for hydrogen separation has attracted much attention. In this work, Ni0.85Se, MoS2 and their composite Ni0.85Se/MoS2 with different mole ratios are prepared successfully, as electrocatalysts to catalyze the hydrogen evolution reaction (HER) in water splitting. The result shows that MoS2/Ni0.85Se with a molar ratio of Mo/Ni = 30 (denoted as M30) has the best catalytic performance towards HER, with the lowest overpotential of 118 mV at 10 mA cm−2, smallest Tafel slope of 49 mV·dec−1 among all the synthesized materials. Long-term electrochemical testing shows that M30 has good stability for HER over at least 30 h. These results maybe due to the large electrochemical active surface area and high conductivity. This work shows that transition metal selenides and sulfides can form effective electrocatalyst for HER.  相似文献   

3.
Electrochemical hydrogen evolution is an important research field to produce renewable energy. Nanostructured two dimensional (2D) materials such as g-C3N4 and MoS2 are potential electrocatalysts for hydrogen evolution reaction (HER). The incorporation of semiconducting material into 2D material enhances the hydrogen evolution. Here in, we have developed composite of acid functionalized MoS2 and g-C3N4 with TiO2 (F–MoS2/TiO2, F-g-C3N4/TiO2). The F–MoS2/TiO2 composite exhibited excellent electrochemical HER activity with an overpotential of 103 mV Vs RHE at 20 mA/cm2 compared to pristine F–MoS2 of 232 mV, TiO2 of 455 mV Vs RHE. In addition F-g-C3N4/TiO2 showed high overpotential of 322 mV at 5 mA/cm2 than pristine F-g-C3N4 and TiO2 of 433 mV and 448 mV Vs RHE at 2.7 mA/cm2 respectively.  相似文献   

4.
A facile oxidation-sulfidation strategy is proposed to fabricate the vertically aligned amorphous MoS2 nanosheets on MoO2 films/Mo foil (MF) as free-standing electrode, which features as the integration of three merits (high conductivity, abundant exposures of active sites, and enhanced mass transfer) into one electrode for hydrogen evolution reaction (HER). Density functional theory (DFT) calculations reveal the strong interaction between MoS2 and MoO2, which can enhance the intrinsic conductivity with narrow bandgap, and decreases hydrogen adsorption free energy (ΔGH1 = ~0.06 eV) to facilitate the HER process. Benefiting from the unique hierarchical structure with amorphous MoS2 nanosheets on conductive MoO2 films/MF to facilitate the electron/mass transfer by eliminate contact resistance, controllable number of stacking layers and size of MoS2 slabs to expose more edge sites, the optimal MoS2/MoO2/MF exhibits outstanding activity with overpotential of 154 mV at the current density of 10 mA cm−2, Tafel slope of 52.1 mV dec−1, and robust stability. Furthermore, the intrinsic HER activity (vs. ECSA) on MoS2/MoO2/MF is significantly enhanced, which shows 4.5 and 18.6 times higher than those of MoS2/MF and MoO2/MF at overpotential of 200 mV, respectively.  相似文献   

5.
The development of inexpensive and competent electrocatalysts for high-efficiency hydrogen evolution reaction (HER) has been greatly significant to realize hydrogen production in large scale. In this paper, we selected the inexpensive and commercially accessible stainless steel as the conductive substrate for loading MoS2 as a cathode for efficient HER under alkaline condition. Interconnected MoS2 nanosheets were grown uniformly on 316-type stainless steel meshes with different mesh numbers via a facile hydrothermal way. And the optimized MoS2/stainless steel electrocatalysts exhibited superior electrocatalytic performance for HER with a low overpotential of 160 mV at 10 mA cm−2 and a small Tafel slope of 61 mV dec−1 in 1 M KOH. Systematic study of the electrochemical properties was performed on the MoS2/stainless steel electrocatalysts in comparison with the commonly used carbon cloth to better comprehend the origin of the superior HER performance as well as stability. By collaborative optimization of MoS2 nanosheets and the cheap stainless steel substrate, the interconnected MoS2 nanosheets on stainless steel provide an alternative strategy for the development of efficient and robust HER catalysts in strong alkaline environment.  相似文献   

6.
In the present study, zinc oxide doped titanium dioxide nanotubes (ZnO/TiO2-NTs) were designed by using electrochemical deposition method. Titanium dioxide nanotubes (TiO2-NTs) were fabricated by anodization method. Nanostructured ZnO was deposited with various deposition times on TiO2-NTs. The morphological, structural, optoelectronic properties of ZnO/TiO2-NTs were examined in detail. The morphological and structural characterization of obtained electrodes was investigated with help of field emission scanning electron microscopy and X-ray diffraction. ZnO nanostructures with three different morphologies were obtained from nanotowers to nanoleafs. XRD results depicted that ZnO nanostructures have the high crystallinity with hexagonal wurtzite structure. The measurements of the contact angle were utilized to determine the wetting behavior of the obtained surface of materials. Electrochemical impedance spectroscopy measurement was used in 1 M KOH to investigate electrocatalytic behavior of the obtained materials towards hydrogen evolution reaction. Flat band potentials, as well as charge carrier densities, were determined by using Mott-Schottky analysis. The charge carrier densities were calculated as 1.06 × 1019 and 1.66 × 1020 cm−3 for TiO2-NTs and 30-ZnO/TiO2-NTs, respectively. The energy consumption and energy efficiency were determined for hydrogen evolution on ZnO/TiO2-NTs electrodes.  相似文献   

7.
High-activity and cost-effective transition metal sulfides (TMSs) have attracted tremendous attention as promising catalysts for hydrogen evolution reaction (HER). However, a significant challenge is the simultaneous construction of abundant electrochemical active sites and the fast electronic transmission path to boost a high-efficient HER. Herein, we demonstrate a facile one-step hydrothermal preparation of MoS2 hollow nanospheres decorating Ni3S2 nanowires supported on Ni foam (NF), without any other additional template, surfactant or annealing. In this three-dimensional (3D) heterostructure, the ultrathin-layered MoS2 hollow nanospheres contribute to the promotion of the total surface area and the electrochemical active sites. Meanwhile, the Ni3S2 nanowires are beneficial to the high electrical conductivity. Consequently, the optimized MoS2/Ni3S2/NF-200-24 electrocatalyst presents an extremely superior HER activity to that of individual MoS2/NF and Ni3S2/NF. The HER overpotentials are 85 mV at 10 mA cm−2 and 189 mV at 100 mA cm−2, which are also comparable with the state-of-the-art 20% Pt/C/NF electrode at both low and high current.  相似文献   

8.
Fabricating earth-abundant bifunctional water splitting electrocatalysts with high efficiencies to replace noble metal-based Pt and IrO2 catalysts is in great demand for the development of clean energy conversion technologies. Molybdenum disulfide (MoS2) nanostructures have attracted much attention as promising material for hydrogen evolution reaction (HER). The production of hydrogen gas by help of potential efficient earth abundant metal oxides, and stable electrolysis seems a promising for hydrogen evolution reaction pathway in 1 M potassium hydroxide electrolyte media is a hot research topic in the field for clean energy conversion, renewable energies and storage. Here we propose asystem composed NiO nanostructures and MoS2 deposited on (MoS2@NiO). Here, by hydrothermal method NiO prepared and MoS2@NiO by an electrospinning technique complex, can be used as catalyst to produce a large amount of hydrogen gas bubbles. The NiO nanostructures composite having highest synergistic behavior fully and covered by the MoS2. For the MoS2@NiO nano composite catalyst, experiment applied in 1 M KOH for the production of hydrogen evolution reaction which exhibits distinct properties from the bulk material. Overpotential values recorded low 406 mV and current density 10 mA cm−2 measured. Co-catalysts characterized by using different techniques for deep study as scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Owing to their unique structure, as-prepared nanocomposite exhibited enhanced catalytic performance for HER due to high electroactive surface area and swift electron transfer kinetics. Based on the HER polarization curves at low potential electrochemical to examine the effects of intercalants HER catalytic efficiency. Our findings establish low Tafel slope (44 mV/decade) and the catalyst stable for at least 13 h. This simple exploitation of MoS2@NiO composite catalysts depending on the intended application of their electrochemistry.  相似文献   

9.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

10.
The substitution of noble metal platinum catalyst is one of the important research contents for sustainable development and is also the key to the practical application of photoelectrochemical (PEC) hydrogen production. In this work, we loaded the 1T-2H mixed phase MoS2 on the hydrogenated anatase/rutile heterophase TiO2 (A-H-RTNA) by hydrothermal method to prepare a new MoS2/A-H-RTNA electrode material. The prepared material exhibited higher carrier density, lower PL intensity and higher conductivity than Pt/A-H-RTNA because 1T-MoS2 has more active sites and lower charge transfer resistance than Pt. With the bias voltage of −0.4 V, the optimized 16MoS2/A-H-RTNA as photocathode shows the largest PEC hydrogen production rate of 1840 mmol m−2 h−1, which is 2.9 and 2.2 times higher than those of A-H-RTNA (625 mmol m−2 h−1) and Pt/A-H-RTNA (848 mmol m−2 h−1), respectively. We innovatively used the prepared 16MoS2/A-H-RTNA film as counter electrode instead of Pt electrode to construct a PEC system without any noble-metal. The result demonstrates that the noble-metal-free MoS2 loaded on TiO2 electrode as counter electrode has 75% PEC activity of noble metal Pt electrode. This study develops a PEC method for hydrogen evolution, which no longer depends on precious metal platinum as cathode.  相似文献   

11.
We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec−1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec−1, respectively) and enhanced over a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec−1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies.  相似文献   

12.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

13.
Technology urges to replace the state-of-the-art catalysts such as platinum with low cost, earth abundant and durable electrocatalysts for efficient hydrogen evolution (HER) reaction which is going to become the major sustainable production of energy in future. Herein, we present the heterostructure based MoS2.ZnO (MZO) heterostructures for successful electrochemical water splitting process. For HER, the prepared MoS2.ZnO nanocomposites show the over potential as low as 239 mV at cathodic current density 10 mAcm−2 with an exchange current density of 3.2 μAcm−2. A Tafel slope of about 62 mV per decade suggested to have the Volmer-Heyrovsky mechanism for the HER process with MoS2.ZnO nanocomposite as the catalyst. The small Tafel slope indicates a promising electrocatalyst for HER in practical application. The strong interface formation at the MoS2.ZnO heterostructure facilitates higher catalytic activity and excellent cycling stability. The heterostructure formation based on semiconductor two dimensional (2D) transition metal dichalcogenides (TMDC) open up new avenues for effective manipulation of HER catalysts.  相似文献   

14.
The layered MoS2 nanostructures have been widely used in the electrochemical hydrogen evolution reaction (HER), but rarely applied in overall water splitting application for their ignorable oxygen evolution reaction (OER) activity. To address this issue, a novel self-standing and bifunctional electrocatalyst, consisting of Co-doped MoS2 nanosheets anchored on carbon fiber paper, has been prepared via hydrothermal method. Taking advantage of conductive substrate of carbon fiber paper, sufficient-exposed active edges of MoS2 sheets, and metallic character caused by Co-doping, our electrode exhibits high-efficient bifunctional activities for the overall water splitting in alkaline electrolyte (1 M KOH), which can produce a current density of 20 mA cm−2 at an overpotential of 197 mV for HER and 235 mV for OER.  相似文献   

15.
The hydrogen evolution reaction (HER) properties of the catalysts are significantly dependent on their microscopic structure. Interfacial engineering at the atomic level is the main approach to design high performance of electrocatalysts. Herein, an interfacial modulation strategy is proposed to fabricate monolayer amorphous MoS2 nanoparticles with an average of 3.5 nm in diameter stuck in multilayer N-doped carbon (MoS2/NC), boosting a high HER activity. The amorphous MoS2 could provide more edge active sites and NC layers endow the fast electron transfer. The XPS, Raman spectra and density functional theory (DFT) calculations reveal that the C–S bond in MoS2/NC provides the fast electron transfer and decreases H binding energy. Benefiting the unique sandwiched structure, the MoS2/NC boosts a low overpotential of 152.6 mV at a current density of 10 mA cm−2, a small Tafel slope of 60.3 mV dec−1, and outstanding long-term stability with 97.3% retention for over 24 h. This strategy provides a new opportunity and development of interfacial engineering for turning intrinsic catalytic activity for water splitting.  相似文献   

16.
The MoS2/Ti3C2 catalyst with a unique sphere/sheet structure were prepared by hydrothermal method. The MoS2/Ti3C2 heterostructure loading 30% Ti3C2 has a maximum hydrogen production rate of 6144.7  μmol g−1 h−1, which are 2.3 times higher than those of the pure MoS2. The heterostructure maintains a high catalytic activity within 4 cycles. The heterostructure not only effectively reduce the recombination of photogenerated electrons and holes, but also provide more activation sites, which promotes the photocatalytic hydrogen evolution reaction (HER). These works can provide reference for the development of efficient catalysts in photocatalytic hydrogen evolution.  相似文献   

17.
Highly efficient and durable non-noble metal-based hydrogen evolution electrocatalysts are critical to advance the production of hydrogen energy via alkaline water electrolysis. Herein, we prepared a novel TiO2@WS2 hybrid via a facile and scalable two-step hydrothermal strategy combined with selective etching. Benefited from acid-etched TiO2 nanobelts with rough surface as substrate, ultrathin WS2 nanosheets nucleated and vertically grew into few layers in the confined configuration with more exposed active edges. Furthermore, the partial incorporation of oxygen in WS2 inherited from the remaining O–W bonds of tungsten precursor enhanced the electrical conductivity of the hybrid. Therefore, TiO2@WS2 hybrid was proved to be efficient and durable electrocatalyst for hydrogen evolution in alkaline medium. Upon optimal conditions, the hybrid only required a small onset overpotential of 95 mV and a low overpotential of 142 mV at 10 mA cm−2, superior to pristine WS2 and TiO2. In addition, better cycling stability during the alkaline HER process was also obtained, indicating its capability in future practical application. The synthesis strategy presents a cost-effective approach to produce efficient WS2-based HER electrocatalyst for electrochemical water splitting.  相似文献   

18.
There are great challenges to develop and fabricate a high performance, low-cost and stable non-platinum catalyst for hydrogen evolution reaction (HER). In our study, we firstly developed a simple method to successfully fabricate a new MoS2/NiCo2S4 heterostructure by a two-step hydrothermal method, and studied the HER property of MoS2/NiCo2S4, where the as-prepared NiCo-layered double hydroxide (NiCo-LDH) was used as the precursor of NiCo2S4. Benefitting from the prominent synergistic effect between NiCo2S4 and MoS2, MoS2 provided massive catalytic active edge sites, and NiCo2S4 enhanced the conductivity of the composite. As a result, the MoS2/NiCo2S4 showed excellent HER catalytic activity, with a current of 10 mA cm−2 at overpotential of 94 mV for HER and a low Tafel slope of 46 mV dec−1, and good cycling stability in Alkaline Media. As well as, our work offered one promising high active and stable non-platinum catalyst for overall water splitting.  相似文献   

19.
Exfoliated colloidal MoS2 nano sheets with a size alternating from 5 to 10 nm have been successfully synthesized. The synthesis is accomplished through the formation of MoS2/TiO2 heterostructure containing single or weakly bounded 2–3 layer MoS2 sheets coated on 10–15 nm TiO2 nanoparticles, followed by selective removal of TiO2 from the MoS2/TiO2 heterostructure. The synthesized sheets contain predominantly 1T phase (80%) with 2H phase. The electrochemical assessment demonstrates that colloidal MoS2 nano sheets exhibits outstanding performance in electrocatalytic hydrogen evolution reaction (HER) with a very low Tafel slope of 56 mV/dec, low onset overpotential, and excellent cycling stability in acidic media. This process also offers a one-pot method for the large scale production of 1T-MoS2 in its nano dimension.  相似文献   

20.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号