首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The construction of heterojunction has been regarded as an effective way to promote photocatalytic H2 evolution activity, in which an intimately interfacial contact between the materials forming heterojunction is a positive effect on enhancing activity. Herein, a ternary 3D interconnected nanocomposite Ti3C2/MoS2/CdS was synthesized by a hydrothermal method. MoS2 nanosheet with a vertically aligned structure grew on the surface of multi-layered Ti3C2 to form 3D Ti3C2/MoS2 with tightly interfacial contact, which works as a cocatalyst for enhancing photocatalytic H2 evolution. CdS as a photocatalyst covered the surface of Ti3C2/MoS2 to absorb light energy. Benefitting to the synergistic effect between Ti3C2 and MoS2, the Ti3C2/MoS2 further accelerates electron transfer and inhibits the recombination of carriers. The H2 evolution rate of Ti3C2/MoS2/CdS reaches 15.2 mmol h?1 g?1 and the apparent quantum yield is 42.1% at λ = 420 nm. The result provides a useful insight for developing cocatalysts with new nanostructures via controlled interfacial engineering.  相似文献   

2.
In a recent article entitled “MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation” published in this journal, MoS2/Ti3C2 heterostructure was prepared with excellent performance as photocatalyst for hydrogen evolution reaction. Although the materials were correctly made and tested, the presentation and explanation of X-ray diffraction (XRD) patterns are not correct. Some diffraction peaks are not indexed correctly. Therefore, better XRD patterns and explanation are suggested to ensure the reliability of the photocatalytic mechanism of MoS2/Ti3C2 in that paper.  相似文献   

3.
Designing efficient photocatalytic systems for hydrogen evolution is extremely important from the viewpoint of the energy crisis. Highly crystalline heterostructure catalysts have been established, considering their interface electric field effect and structural features, which can help improve their photocatalytic hydrogen-production activity. In this study, we fabricated a highly crystalline heterojunction consisting of ZnFe2O4 nanobricks anchored onto 2D molybdenum disulfide (MoS2) nanosheets (i.e., ZnFe2O4/MoS2) via a hydrothermal approach. The optimized ZnFe2O4/MoS2 photocatalyst, with a ZnFe2O4 content of 7.5 wt%, exhibited a high hydrogen-production rate of 142.1 μmol h−1 g−1, which was 10.3 times greater than that for the pristine ZnFe2O4 under identical conditions. The photoelectrochemical results revealed that the ZnFe2O4/MoS2 heterojunction considerably diminished the recombination of electrons and holes and promoted efficient charge transfer. Subsequently, the plausible Z-scheme mechanism for photocatalytic hydrogen production under white-LED light irradiation was discussed. Additionally, the influence of cocatalysts on the photocatalytic hydrogen evolution for the ZnFe2O4/MoS2 heterostructure was investigated. This work has demonstrated a simplified coupling of one-dimensional or zero-dimensional structures with 2D nanosheets for improving the photocatalytic hydrogen production activity as well as confirmed that MoS2 is a viable substitute for precious metal-free photocatalysis.  相似文献   

4.
Fabricating heterostructure photocatalysts with co-catalysts can improve the separation and transfer of photo-induced electrons and holes for photocatalysis reactions. Herein, Ti3C2Tx nanosheets are obtained by chemical etching via the hydrothermal route and serve as a template for growing photocatalysts. NiS2 nanoparticles and CuS nanoneedles are deposited sequentially on the surface of Ti3C2Tx nanosheets to form “Type II” CuS/NiS2/Ti3C2Tx hierarchical heterostructure via the solvothermal method. The enormous nanoneedles morphology provides enlarged active sites for the photocatalytic processes. The fabricated CuS/NiS2/Ti3C2Tx heterostructure delivers an increased hydrogen generation rate of 32.66 mmol g−1 h−1, which is higher than that of pure CuS (2.38 folds), NiS2 (1.93 folds), and NiS2/Ti3C2Tx (1.71 folds). CuS/NiS2/Ti3C2Tx heterostructure also performs a superior hydrogen evolution retention of 97.7% after 4 cycles (one cycle lasts 4 h), implying its decent structural stability and light corrosion resistance. The reasons are ascribed to the constructed “Type II” heterostructure of CuS/NiS2 with higher active sites, improved conductivity, and efficient separation of electrons and holes. DFT calculation and Mott-Schottky plots results elucidate the formation mechanism of CuS/NiS2/Ti3C2Tx “Type II” structure. CuS/NiS2/Ti3C2Tx heterostructure also obtains a reduced bandgap with increased light absorption. The van der Waals force between 2D materials enhances the transfer of photo-generated electrons. This work demonstrates that designing hierarchical co-catalyst heterostructure without non-noble can effectively promote water splitting in the solar-to-chemical system.  相似文献   

5.
An oxygen-vacancy rich, bismuth oxide (Bi2O3) based MoS2/Bi2O3 Z-scheme heterojunction catalyst (2-BO-MS) was prepared in an autoclave hydrothermal method using ethanol and water. The performance of MoS2/Bi2O3 catalyst was examined for photocatalytic hydrogen evolution, photoelectrochemical activity, and crystal violet (CV) dye degradation by comparing with pristine Bi2O3 and MoS2. The hydrogen evolution performances of 2-BO-MS catalyst exhibited 3075.21 μmol g−1 h−1, which is 7.18 times higher than that of MoS2 (428.14 μmol g−1 h−1). The XPS, XRD and HRTEM analyses covered that the superior photocatalytic performance of 2-BO-MS catalyst might have stemmed out due to the existence of oxygen vacancies, enhanced strong interfacial interaction between MoS2 and Bi2O3 and specific surface area. The in-depth investigation has been performed for MoS2/Bi2O3 Z-scheme heterojunction using several characterization techniques. Moreover, the photocatalytic mechanism for hydrogen evolution and photodegradation were proposed based on trapping experiment results. This results acquired using MoS2/Bi2O3 Z-scheme heterojunction would be stepping stone for developing heterojunction catalyst towards attaining outstanding photocatalytic activity.  相似文献   

6.
Lead-free Cs2AgBiBr6 (CABB) double perovskite as a new-type photocatalytic material alternative to lead halide perovskites holds promise to implement the solar-H2 conversion, but the interior recombination of photo-generated carriers and thus low photocatalytic hydrogen evolution reaction (HER) rate of CABB restrict its further industrial applications. Herein, we report the composite fabrication of MoS2/CABB heterostructure for high-efficiency and durable photocatalytic HER by anchoring non-noble MoS2 onto CABB via a facile dissolution-recrystallization method. The optimized MoS2/CABB performs a visible-light HER rate of 87.5 μmol h?1 g?1 in aqueous HBr solution, ca. 20-fold compared to that of pure CABB (4.3 μmol h?1 g?1), and presents a discontinuous 500-h photocatalytic HER stability with no evident loss. The superb performance of MoS2/CABB can be ascribed to the kinetics-facilitated heterostructure consisting of stable CABB and MoS2. This work proposes a facile and versatile tactic to construct a low-cost Cs2AgBiBr6-based heterostructure for efficient and long-term photocatalytic HER.  相似文献   

7.
The design of p-n heterojunction photocatalysts to overcome the drawbacks of low photocatalytic activity that results from the recombination of charge carriers and narrow photo-response range is promising technique for future energy. Here, we demonstrate the facile hydrothermal synthesis for the preparation of Bi2O3/MoS2 p-n heterojunction photocatalysts with tunable loading amount of Bi2O3 (0–15 wt%). The structure, surface morphology, composition and optical properties of heterostructures were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, Brunauer-Emmett-Teller (BET) surface area, photoluminescence (PL), electrochemical impedance spectroscopy (EIS). Compare to pure Bi2O3 and MoS2, the Bi2O3/MoS2 heterostructures displayed significantly superior performance for photocatalytic hydrogen (H2) production using visible photo-irradiation. The maximum performance for hydrogen evolution was achieved over Bi2O3/MoS2 photocatalyst (10 μmol h−1g−1) with Bi2O3 content of 11 wt%, which was approximately ten times higher than pure Bi2O3 (1.1 μmol h−1g−1) and MoS2 (1.2 μmol h−1g−1) photocatalyst. The superior performance was attributed to the robust light harvesting ability, enhanced charge carrier separation via gradual charge transferred pathway. Moreover, the increased efficiency of Bi2O3/MoS2 heterostructure photocatalyst is discussed through proposed mechanism based on observed performance, band gap and band position calculations, PL and EIS data.  相似文献   

8.
Despite MoS2 being a promising non-precious-metal cocatalyst, poor electronic conductivity and low activity for hydrogen evolution caused by serious agglomeration have been identified as critical roadblocks to further developing MoS2 cocatalyst for photocatalytic water splitting using solar energy. In this work, the density functional theory calculations reveal that carbon intercalated MoS2 (C-MoS2) has excellent electronic transport properties and could effectively improve catalytic activity. The experiment results show that the prepared tremella-like C-MoS2 nanoparticles have large interlayer spacing along the c-axis direction and high dispersion because of intercalation of the carbon between adjacent MoS2 layers. Furthermore, the heterostructure photocatalyst of C-MoS2@g-C3N4 formed by loading the cocatalyst of C-MoS2 onto g-C3N4 nanosheets exhibits the H2 evolution rate of 157.14 μmolg−1h−1 when containing 5 wt% C-MoS2. The high photocatalytic H2 production activity of the 5 wt% C-MoS2@g-C3N4 can be attributed to the intercalated conductive carbon layers in MoS2, which leads to efficient charge separation and transfer as well as increased activities of the edge S atoms for H2 evolution. We believe that the C-MoS2 will offer great potential as a photocatalytic H2 evolution reaction cocatalyst with high efficiency and low cost.  相似文献   

9.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

10.
Developing advanced noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) is still a great challenge. Herein, a novel HER catalyst with quasi zero-dimensional (0D) MoS2 quantum dots (QDs) supported on two-dimensional (2D) Ti3C2Tx MXene nanosheets is facilely synthesized. The MoS2 QDs/Ti3C2Tx nanohybrid retains the unique layer structure, and the MoS2 QDs are in situ formed and distributed uniformly. The obtained MoS2 QDs/Ti3C2Tx catalyst exhibits superior electrocatalytic activity due to its excellent conductivity, abundant of active sites exposed and a high percentage of 1T metallic phase (~76%) of MoS2 QDs. Remarkably, an early HER overpotential of 220 mV at 10 mA cm?2 and a small Tafel slope of 72 mV dec?1 of MoS2 QDs/Ti3C2Tx are achieved in 0.5 M H2SO4 solution. In addition, the exchange current density of MoS2 QDs/Ti3C2Tx is ~5 times larger compared with pure MoS2, thus demonstrating an accelerated charge transfer during the electrocatalytic process.  相似文献   

11.
As a novel co-catalyst, Ti3C2 MXene has an excellent prospect in the field of photocatalysis. Herein, the 2D/3D Ti3C2 MXene@CdS nanoflower (Ti3C2@CdS) composite was successfully synthesized by a hydrothermal method. The combination of 2D Ti3C2 MXene and 3D CdS nanoflowers can promote carrier transfer and separation, which can improve the performance of CdS. Compared to pure CdS nanoflowers, Ti3C2@CdS composite presents lower photoluminescence intensity, longer fluorescence lifetime, higher photocurrent density and smaller electrochemical impedance. The Ti3C2@CdS composite with 15 wt% Ti3C2 adding amount presents high photocatalytic hydrogen evolution activity (88.162 μmol g?1 h?1), 91.57 times of pure CdS. The improved photocatalytic activity of Ti3C2@CdS composite is ascribed to the addition of lamellar Ti3C2 MXene, which improves the electrical conductivity of the photocatalytic system and effectively accelerates the excited electrons transfer from CdS to Ti3C2 MXene.  相似文献   

12.
A binary heterostructured CdS/MoS2 flowerlike composite photocatalysts was synthesized via a simple one-pot hydrothermal method. This photocatalyst demonstrated higher photocatalytic hydrogen production activity than pure MoS2. The heterojunction formed between MoS2 and CdS seems to promote interfacial charge transfer (IFCT), suppress the recombination of photogenerated electron–hole pairs, and enhance the hydrogen generation. Based on the good match between the conduction band (CB) edge of CdS and that of MoS2, electrons in the CB of CdS can be transferred to MoS2 easily through the heterojunction between them, which prevents the accumulation of electrons in the CB of CdS, inhibiting photocorrosion itself and greatly enhancing stability of catalyst. Hydrogen evolution reaction (HER) using Na2S/Na2SO3 or glucose as sacrificial agents in aqueous solution was investigated. The ratio between CdS and MoS2 plays an important role in the photocatalytic hydrogen generation. When the ratio between CdS and MoS2 reaches 40 wt%, the photocatalyst showed a superior H2 evolution rate of 55.0 mmol g−1 h−1 with glucose as sacrificial agent under visible light, which is 1.2 times higher than using Na2S/Na2SO3 as sacrificial agent. Our experimental results demonstrate that MoS2-based binary heterostructured composites are promising for photocorrosion inhibition and highly efficient H2 generation.  相似文献   

13.
Few-layer molybdenum disulfide (MoS2) nanosheets are well applied in many field, but the lack of simple methods for the preparation of solid few-layer MoS2 nanosheets with high yield and quality has greatly restricted their development. In this work, a facile solvothermal treatment coupled with the liquid exfoliation strategy was conducted to produce solid monodispersed few-layer MoS2 nanosheets from the MoS2 stack, and the output can reach as high as approximately 0.3 g/g. The few-layer features were confirmed by characterizations of SEM, TEM, Raman spectra, UV–vis absorption spectrum and PL spectrum. The obtained MoS2 nanosheets exhibit fantastic dispersity and stability in an NMP solution, which can remain uniform even after one year. In general, pure MoS2 catalysts show no or poor activity for photocatalytic hydrogen evolution as reported in the literature, however, the prepared MoS2 nanosheets in this work display excellent photocatalytic H2 evolution performance of 1241.3 μmol g−1 h−1 due to the synergistic structural and electronic modifications, including a bigger specific surface area, additional exposed active edge sites, superior charge separation and transfer efficiency, and higher reduction potential.  相似文献   

14.
The unique architecture is very significant for photocatalysts to achieve high photocatalytic efficiency. Herein, hollow Cu2MoS4/ZnIn2S4 heterostructural nanocubes with intimate-contact interface have been prepared for the first time via a self-template way, which can promote the photocatalysis hydrogen evolution. First, novel hollow structured Cu2MoS4 nanocubes were successfully synthesized using Cu2O as a precursor, then the ZnIn2S4 nanosheets were in-situ grew on the surface of hollow Cu2MoS4 nanocubes. The unique hollow heterostructures have markedly enhanced photocatalytic efficiency, and 15 wt% Cu2MoS4/ZnIn2S4 sample exhibits the highest hydrogen production rate of 8103 μmol·h−1·g−1, which is approximately four times higher than pure ZnIn2S4. The improved photocatalytic performance is mainly attributed to the following two points: (1) the hollow nanocube structure can provide rich active sites and increase light absorption; (2) forming a built-in electric field is conducive to transfer the holes generated by ZnIn2S4 to Cu2MoS4, which can effectively promote charge separation. This work may provide insights for the design of hollow architecture cage materials for high photocatalytic performance.  相似文献   

15.
The annealed Ti3C2Tx MXenes retained original layered morphology and gave rise to the formation of TiO2 is anticipated to achieve improved photocatalytic hydrogen evolution performance as a noble-metal-free co-catalyst. In this work, a novel Ti3C2/TiO2/UiO-66-NH2 hybrid was rationally designed for the first time by simply introducing annealed Ti3C2Tx MXenes over water-stable Zr-MOFs (UiO-66-NH2) precursors via a facile hydrothermal process. As expected, the rationally designed Ti3C2/TiO2/UiO-66-NH2 displayed significantly improvement in photocatalytic H2 performance (1980 μmol·h1·g1) than pristine UiO-66-NH2 under simulated sunlight irradiation. The excellent photocatalytic HER activity can be attributed to the formation of multi-interfaces in Ti3C2/TiO2/UiO-66-NH2, including Ti3C2/TiO2/UiO-66-NH2, Ti3C2/TiO2 and Ti3C2/UiO-66-NH2 interfaces, which constructed multiple pathways at the interfaces with Schottky junctions to accelerate the separation and transfer of charge carriers and endowed the accumulation of photo-generated electrons on the surface of Ti3C2. This work expanded the possibility of porous MOFs for the development of efficient photocatalytic water splitting using annealed MXenes.  相似文献   

16.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

17.
We here report the fabrication of a core-shell WO3@ZnIn2S4 heterostructure by an interfacial seeding growth strategy, which is implemented by direct growth of ZnIn2S4 nanosheets on the surface of WO3 nanorods with forming a strong electronic interaction between two semiconductors that are beneficial for promoting the interfacial charge transfer. Systematic studies demonstrate that the WO3@ZnIn2S4 nanohybrids hold superior performance for photocatalytic hydrogen generation under visible light irradiation with a production rate of 3900 μmol g−1 h−1. This work provides an effective approach to construct the direct Z-scheme photocatalytic systems for efficient photocatalytic hydrogen evolution, which would be significant for the design of more direct Z-scheme system for various photocatalytic applications.  相似文献   

18.
A novel visible-light active MoO3/N–MoS2 heterostructure photocatalyst was fabricated via hydrothermal process. The structure, morphology and optical characteristics were studied using X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), UV–visible and photoluminescence (PL) spectroscopies. The results indicated that loading pf MoO3 and nitrogen doping played main influence role in advancing the morphology and optical characteristics. Upon visible photo-illumination, the MoO3/N–MoS2 sample displayed superior photocatalytic H2-production activity (118 μ mol h−1g−1), which was about four-time higher than that of pure MoS2 (30 μ mol h−1g−1). The enhancement in photocatalytic performance of MoO3/N–MoS2 photocatalyst can be ascribed to the development of direct Z-scheme heterostructure, which promoted the photo-excited electrons/holes transfer and separation. The recycling experiment verified that the MoO3/N–MoS2 photocatalyst had superior cyclic activity and stability, implying promising applications in energy field.  相似文献   

19.
In this work, a 2D/2D heterojunction composed of CoAl layered double hydroxide (LDH) and graphitic carbon nitride nanosheets (CNNS) was designed and fabricated for boosting photocatalytic hydrogen generation. The as-prepared 20 mol% CoAl-LDH/CNNS exhibited a remarkable photocatalytic hydrogen evolution rate of 680.13 μmol h−1 g−1, which was 21 times higher than that of pure CoAl-LDH (32.91 μmol h−1 g−1). The enhanced activity could be mainly attributed to its unique structure and high surface area. Distinct from ordinary heterojunction photocatalysts, two-dimensional (2D) heterojunctions with abundant 2D coupling interfaces and strong interfacial interaction could efficiently suppress the recombination of photo-induced charge carriers and shorten charge transmission distance. Particularly, compared with other concentrations, the increased surface area (138.70 m2 g−1) of 20 mol% CoAl-LDH/CNNS, which is 3.94 times of pure CNNS (35.48 m2 g−1), is more favorable for enhanced photocatalytic activity. Increasing the surface area of sheet-on-sheet heterostructure is an effective and novel strategy to facilitate the photocatalytic hydrogen evolution from water splitting.  相似文献   

20.
The fabrication of metal sulfides heterostructure is a promising strategy for enhancing catalytic activity. Herein, the MoS2/CuS heterostructure was successfully grown on carbon cloth (MoS2/CuS/CC) through an efficient method. The SEM results confirmed that the fabricated MoS2/CuS/CC composites have a flake morphology, which can not only improves the surface area but also offers ample surface catalytic active sites. Particularly, the optimized MoS2/CuS/CC-2 electrocatalyst showed a small overpotential of 85 mV@10 mA cm?2 and exceptional long-term cycling durability for hydrogen evolution in 1 M KOH. The outstanding catalytic activity is attributed to the fact that the combination of MoS2 with CuS can greatly enhance the charge transport rate and improve the structural stability. These results suggest that the MoS2/CuS/CC heterostructure is a potential electrocatalyst for hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号